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Prior research in psychology has found that people’s decisions are often inconsistent [Kahneman et al., 56, 57].
An individual’s decisions vary across time, and decisions vary even more across people. Inconsistencies
have been identified not only in subjective matters, like matters of taste, but also in settings one might
expect to be more objective, such as sentencing, job performance evaluations, or real estate appraisals. In our
study, we explore whether algorithmic decision aids can be used to moderate the degree of inconsistency in
human decision-making in the context of real estate appraisal. In a large-scale human-subject experiment, we
study how different forms of algorithmic assistance influence the way that people review and update their
estimates of real estate prices. We find that both (i) asking respondents to review their estimates in a series of
algorithmically chosen pairwise comparisons and (ii) providing respondents with traditional machine advice
are effective strategies for influencing human responses. Compared to simply reviewing initial estimates one
by one, the aforementioned strategies lead to (i) a higher propensity to update initial estimates, (ii) a higher
accuracy of post-review estimates, and (iii) a higher degree of consistency between the post-review estimates of
different respondents. While these effects are more pronounced with traditional machine advice, the approach
of reviewing algorithmically chosen pairs can be implemented in a wider range of settings, since it does not
require access to ground truth data.
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Fig. 1. Graphical overview of experimental conditions T1-T5. In T1 and T2, respondents review their decisions
one-by-one, while in T3-T5 they review decisions in randomly (T3) or meaningfully (T4 and T5) selected pairs.
In T2 and T5 respondents are additionally provided with (different kinds of) explicit machine advice.

1 Introduction
“. . . humans are unreliable. Judgments can vary a great deal from one individual to
the next, even when people are in the same role and supposedly following the same
guidelines.”

Kahneman et al. [56]
Presented with identical information, the same person might make different decisions at different

points in time, and the decisions of different people are likely to vary even more [56, 57]. Such
inconsistencies between decision-makers have been identified in numerous settings including
sentencing [6], job performance evaluations [90], real estate appraisals [2], and—especially close to
the research community—conference reviewing [8, 10, 23, 62, 93].
In certain settings, variation in people’s decisions is indispensable; it may contain invaluable

information that reflects the variation in people’s background knowledge, political or moral stances,
life experiences, and other factors [85, 100, 101]. However, in other settings, consistency may be con-
sidered normatively desirable instead. For instance, Kahneman et al. [56] argue that organizations
such as credit-rating and insurance agencies expect that, regardless of the particular professional
handling each case, “identical cases should be treated similarly, if not identically”—a notion in
line with that of “individual fairness” in the algorithmic fairness literature [27]. In conference
reviewing, inconsistencies between different groups of reviewers have raised concerns about the
peer-review process in the scientific community [8, 10, 23, 62, 93]. In the organizational justice
literature, consistency of decisions is recognized as an important aspect of procedural justice
[63, 65].
In this work, we focus on such settings where consistency between decision makers might

be deemed desirable, and study how the degree of inconsistency of human decisions could be
moderated with algorithmic assistance. This has immediate implications for the development of
algorithmic assistance to support cooperative work by enabling the distribution of decision-making
tasks amongst multiple decision-makers, without sacrificing consistency. Specifically, we leverage
prior work in psychology and HCI (reviewed in Section 2) to develop a set of algorithmic decision
aids which may influence the degree of inconsistency of human decisions, and we rigorously
experimentally evaluate the effect of these decision aids on human decisions.
Experimental Design. In a large-scale human-subject experiment (𝑁 = 643), we explored five
different approaches to moderating human inconsistency, summarized in Figure 1. We focused
on the task of estimating real estate prices, using a real estate price dataset studied by Poursabzi-
Sangdeh et al. [80]. As a baseline (T1), we measured how people’s decisions are affected by having
the opportunity to review them one-by-one. We compared the effectiveness of this simple reviewing
procedure with a series of more sophisticated interventions.
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Inspired by the growing popularity of machine-assisted decision-making in the judge-advisor
system (JAS) paradigm [9], we studied the effect of providing machine advice (T2). Leveraging prior
research in psychology which found that people might find it easier to make pairwise comparisons
than absolute judgments [74, 88], we also investigated the effectiveness of reviewing past judgments
as a series of pairwise comparisons. We studied the effectiveness of asking respondents to review
randomly selected pairs of apartments (T3), or pairs of apartments whose price estimates were
inconsistent withmost people’s pairwise valuations—with (T5) andwithout (T4) explicitly informing
participants about this inconsistency.
Contributions.We find that both providing traditionalmachine advice (T2) and asking respondents
to review their past decisions as a series of meaningfully selected pairwise comparisons (T4 and T5)
have a large and statistically significant effect on people’s decisions.
Namely, in our pre-registered confirmatory analysis we find that compared to reviewing past

decisions one-by-one (T1), our interventions (T2, T4 and T5) lead to:
• a higher propensity of updating initial decisions
• a higher accuracy of decisions after the review phase
• a higher degree of consistency amongst the post-review decisions of different respondents

In the paper’s appendix, we also conduct an exploratory analysis of the effects of our interventions
on different measures of accuracy and consistency, and report a series of other descriptive statistics.
Takeaways. Prior work on machine-assisted decision-making (as reviewed in Section 2) has
showcased that traditional machine advice (T2) can influence people’s decisions [43] and—if the
decision aid is sufficiently accurate—improve people’s decision accuracy [42, 103]. We demonstrate
that traditional machine advice can also increase the consistency between people’s decisions.

We additionally go beyond studying traditional machine advice and demonstrate the effectiveness
of novel alternative strategies. Asking people to review their decisions in a series of meaningfully
selected pairwise comparisons (T4 and T5) significantly increases the accuracy and consistency of
their decisions. Unlike traditional machine advice (T2), this approach does not require access to
ground truth data—in our case, apartment prices. It requires only data about people’s comparative
valuations of apartments, which is used to identify pairs where a person’s relative ordering of
apartments does not align with the majority’s estimates. Hence, it is also applicable in settings
where ground truth may be costly to obtain or difficult to define. We note that in settings where
there is no clearly defined notion of ground truth, such as in subjective tasks, one cannot make
meaningful claims about the effects of algorithmic assistance on the accuracy of people’s decisions.
Still, such a decision aid could be used to increase inter-annotator consistency, if it is deemed
normatively desirable to do so.
Interestingly, when asking people to review meaningfully selected pairs of estimates (T4), we

observe no significant effect of explicitly informing people that their relative ordering of apartments
did not align with the majority’s comparative valuations (T5). Hence, we identified an effective
strategy for increasing the accuracy and consistency of people’s responses that is applicable even in
scenarios where it is normatively undesirable to explicitly steer people towards specific decisions.
Through our exploratory analysis in the appendix, we see that these results appear robust to

alternative notions of accuracy and consistency.

2 Background
In this section, we provide an overview of related work and position our contributions with respect
to this body of research. We commence by reviewing the literature on machine-assisted decision-
making. Next, we review prior research on the inconsistency of human decisions, discussing
different notions of inconsistency and different approaches to reducing inconsistency. Finally, we
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review prior research in social psychology to form hypotheses about people’s reactions to receiving
feedback about their inconsistency.

2.1 Machine-Assisted Decision-Making
With the increasing popularity of algorithmic decision aids, much research has studied how algo-
rithmic advice shapes human decisions. At a high level, we can discuss the findings of this research
in terms of the factors that were identified to influence people’s advice taking behavior, and the
measures used to evaluate the effects of machine advice on people’s decisions.

Research has identified a plethora of factors that influence people’s advice taking behavior. The
likelihood of accepting advice varies based on the advisor’s identity, with a preference for human
guidance in certain scenarios [12, 25, 26], and a preference for algorithmic advice in other settings
[68, 69]. Receptiveness to machine advice depends on the algorithm’s errors. People are more likely
to take advice from algorithms that are stated or observed to exhibit a higher predictive accuracy
[103], and that make errors more similar to typical human errors [42]. People are also more likely to
take advice from decision aids that are explainable [17, 80, 99]. On the other hand, strong graphical
warnings about algorithmic decision aids may lower the influence of their advice [30]. Advice
taking also depends on the specific advice that is provided; for instance, in the legal domain, people
are more likely to take advice to grant a defendant bail than advice to deny bail [43].

Prior work has studied how machine advice affects human decisions with respect to a variety of
measures. As a first step, most studies measure people’s likelihood of taking machine advice, be it in
terms of the overall advice taking propensity [103], the propensity to take advice pointing towards
a specific decision [43], or the propensity to take (in)correct advice [80]. Some studies have gone
beyond measuring people’s likelihood of taking advice, and measured the effects of machine advice
on the quality of people’s decisions. For instance, in settings where one can define the notion of
correct predictions and ground truth labels, prior work has measured whether machine advice
increases the alignment between people’s decisions and ground truth labels—that is, the accuracy
of people’s decisions [42, 80, 105]. In settings where decisions have important societal implications,
prior work has also studied the effects of algorithmic assistance on the fairness of people’s decisions
[40, 41, 102]. However, little prior work considered the effects of algorithmic assistance on the
consistency of human decisions.
We contribute to research on machine-assisted decision-making by studying how different

algorithmic decision aids impact human decisions with respect to two measures established in
prior work—people’s propensity to take advice and the accuracy of people’s decisions—as well as a
novel measure: the consistency between people’s decisions.

2.2 The (In)Consistency of Human Decisions
Notions of Inconsistency.Much prior work has studied the (in)consistency of human decisions. A
bulk of research has documented the inconsistency between decisions of different decision-makers [56,
57]—that is, a lack of inter-annotator consistency—in tasks as diverse as sentencing [6], evaluating
job performance [90], estimating real estate prices [2], and reviewing submissions to top-tier CS
conferences, such as NeurIPS [8, 23, 62], CSCW [10] and ICLR [93]. We contribute to this line
of research by exploring if algorithms can be used to support cooperative work in such settings
where consistency is deemed to be desirable. Namely, we propose methods for alleviating the
inconsistency between the decisions of different decision-makers for the same set of inputs.

Much research has also studied the consistency of individual decision makers, or intra-annotator
consistency. Cognitive biases such as dynamic inconsistency and hyperbolic discounting are known
to result in the inconsistency of an individual’s decisions across time [67, 91]. Individual’s judgments
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are found to substantially vary across time in various settings [56]: pathologist’s biopsy assessments
of the same sample at different points in time were found to exhibit a correlation of only 0.61 [29];
experts’ estimates of the amount of time required to complete the same software development task
were found to vary by 71% [45].

Prior work has also documented the inconsistency of an individual’s judgments across inputs. A
particularly well-studied aspect of this problem is the inconsistency of people’s pairwise preferences.
Decades of research in this area have led to the development of numerous methods for identifying,
measuring, and reducing the inconsistency of human pairwise preferences [1, 11, 58], as well as
a plethora of approaches to the difficult task of learning human pairwise preferences [19, 35, 50],
which we consult when developing our decision aids in Section 3.4.
Human Heuristics for Reducing Inconsistency. Many decision-making settings require people
to make decisions on a case-by-case basis: granting or denying loans, making bail decisions,
reviewing papers, etc. However, prior research in psychology has documented that people might
find it easier to make comparative judgments than absolute ones in various contexts [74, 88].
Pairwise comparisons are also used to assist people with developing and refining their beliefs
[64]. Hence, it is not surprising that people often rely on comparative judgments to assist them
with making case-by-case decisions. For instance, the analytical hierarchy process that is widely
used to assist with making complex decisions in domains ranging from governance to engineering
relies on comparative judgments at its core [34, 95]. Research on crowdsourcing has also proposed
eliciting respondents’ relative pairwise labels, rather than absolute ones, as a strategy for improving
response quality [18, 76, 89].
To illustrate how one may leverage comparative judgments to assist with absolute judgments,

let us consider the task of grading papers. After (i) assigning initial grades to a set of papers, one
might (ii) compare pairs (or larger subsets) of papers to identify mutually inconsistent decisions, in
order to (iii) revise the final grades. In T4 and T5, we develop a decision aid that identifies pairs of
decisions that are inconsistent with the majority’s comparative valuations, hence providing a tool
for automating step (ii) in the above-described procedure.
Reducing Inconsistency with Algorithmic Assistance. Kahneman at al. [56, 57] extensively
study the problem of noise in human judgments. In Kahneman et al. [56], they discuss several
approaches to reducing inconsistency in human decisions, proposing interventions of varying
strengths. The first and most radical proposal is to replace human decision makers with algorithms.
Still, they highlight the need for people to retain ultimate control. Hence, as the second and weaker
proposal, they propose the use of algorithmic decision aids to assist human decisions. Depending
on the estimated accuracy of human and algorithmic decisions and the normative importance of
accuracy, they highlight the possibility of advising against overruling algorithmic predictions. The
third and weakest intervention is ensuring that decision-makers use similar procedures to gather
and integrate information, and to translate this information into a decision.
The first two proposals rely on algorithmic assistance to reduce human inconsistency. The

underlying idea is to use algorithms to predict correct decisions, which would steer (second proposal)
or even replace (first proposal) human decisions, thereby making them more consistent. In this
paper, we study the effects of the second proposal in treatment T2. However, we also study an
alternative approach in treatments T4 and T5: using algorithms to identify inconsistencies in human
decisions, and to help people reduce their inconsistency by themselves.

2.3 Anticipated Reactions to Feedback about Inconsistency
Algorithmic decision aids have proven to be effective in a plethora of settings. Here we review liter-
ature in social psychology that may help us form hypotheses about the effectiveness of algorithmic
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decision aids for the task of reducing inconsistency in human decisions, and guide the design of our
decision aids. Specifically, we leverage prior work in social psychology to anticipate how people
may react to being provided with feedback about their inconsistency.
Kahneman et al. [56] argue that inconsistency is undesirable in a variety of settings. If our

respondents share this view, they might perceive feedback about their inconsistency as negative
feedback. Prior work in organizational psychology has shown that people may not react positively
to negative feedback about their performance. Negative feedback is not perceived as useful, results
in negative reactions, and is not associated with a recipient’s willingness to change their behavior
[87]. It is also found to evoke defensiveness and denial [70]. The main strategy employees use to
reduce the impact of such negative feedback is to reject it [51]. To mitigate these effects, we will
avoid framing the machine advice as negative feedback, and utilize strategies for softening the
blow proposed by Steelman and Rutkowski [87]: providing high quality feedback delivered in a
considerate manner.

Kahneman et al. [56] also show that people tend to vastly underestimate the degree of inconsis-
tency in human decision-making. Hence, feedback about inconsistency may conflict with people’s
beliefs. Much prior work in psychology has found that people resist evidence that is contradictory
to their preconceptions [5]. Two psychological concepts that are particularly relevant for predict-
ing how people will react to conflicting information are cognitive dissonance [33, 47] and biased
assimilation [71] or disconfirmation bias [28]. Both lines of research point to the same conclusion:
due to overestimating their consistency, people may discount or reject the decision aids’ feedback
about their inconsistency. We attempt to mitigate this effect by familiarizing people with their lack
of expertise with the task at hand: at the beginning of the experiment, participants complete a
tutorial where they can observe the (in)accuracy of their real-estate price estimates.

3 Methodology
In this section, we describe our methodology, including the details of the experimental design
(Section 3.1), the stimulus materials (Section 3.2), the data collection procedure (Section 3.3), and
the procedure of developing the decision aids that were used in our experiment (Section 3.4).

3.1 Experimental Design
In a large-scale, pre-registered human-subject experiment run on Prolific we studied how different
interventions influence people’s estimates of real estate prices. The interventions included asking
respondents to review their initial estimates one by one (treatments T1 and T2) or as pairwise
comparisons (treatments T3, T4 and T5), and providing respondents with different forms of algorith-
mic assistance (treatments T2, T4 and T5). Prior to conducting the human-subject experiment, we
obtained the approval of the Ethical Review Board of the Faculty of Mathematics and Computer Sci-
ence at Saarland University, and pre-registered our experiment on AsPredicted. The pre-registration
documentation can be found on the following url: https://aspredicted.org/aw2ic.pdf.
Scenario. In this work, we focused on the task of estimating real estate prices. In our experiment,
we utilized a dataset of New York City real estate prices introduced by Poursabzi-Sangdeh et al.
[80]. The dataset contains information about 393 apartments located on the Upper West Side of
New York City, which were listed for sale on the real estate website StreetEasy.com between 2013
and 2015. For each listing, we had access to basic information about the apartment, including the
listing price, number of bedrooms, bathrooms and total number of rooms, the apartments’ square
footage and monthly maintenance fees, the number of days the apartment has been on the market,
and the distance from the apartment to the nearest subway and school. We preprocess the data
as proposed by Poursabzi-Sangdeh et al. [80]. Specifically, we remove the apartments where the
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Reviewing Procedure Algorithmic Assistance Data Required
T1 one-by-one none none
T2 one-by-one explicit advice ground truth
T3 pairwise comparisons none none
T4 pairwise comparisons implicit advice human perceptions
T5 pairwise comparisons implicit and explicit advice human perceptions

Table 1. Overview of the characteristics of the 5 experimental conditions in our study. Reviewing Procedure:
Are instances reviewed one-by-one or pairwise? Algorithmic Assistance: Do respondents have access to any
form of algorithmic assistance? Data Required: Do the utilized decision aids require any type of labeled data?

number of bedrooms is greater than the total number of rooms or where the apartment’s square
footage is less than 200 sqft. With this preprocessing, we were left with 387 apartments. From these,
we utilized 30 apartments as stimulus material in the human-subject experiment (Section 3.2), and
the remaining 357 apartments for training the decision aids (Section 3.4).
Experimental Conditions. In each experimental condition, respondents were first asked to
complete a tutorial, in order to familiarize themselves with real estate prices in New York City.
Next, all respondents were asked to estimate the prices of the same 30 apartments. After gathering
the respondents’ initial estimates of apartment prices, we asked them to review their estimates in
one of five different ways, as described below and summarized in Figure 1 and Table 1.

In the control condition T1, respondents were asked to perform the simplest revision procedure.
They were asked to revise their initial estimates one-by-one.

T1: Respondents were asked to review all of their estimates one-by-one, in the same format as
they originally made them: 30 apartments, one per page, shown in random order.

T2 was inspired by decision aids that are commonly used in themachine-assisted decision-making
literature [43, 103]. It corresponds to the standard machine-assisted decision-making setting in the
judge-advisor system (JAS) paradigm [9].

T2: Compared to T1, wemanipulated the information provided in the review phase. Respondents
were again asked to review all of their initial estimates one-by-one (30 apartments, one per
page, shown in random order), but the apartment descriptions were accompanied by machine
advice. Specifically, respondents were shown the estimates of a linear regression model which
we trained to estimate real estate prices using the dataset introduced by Poursabzi-Sangdeh
et al. [80], as described in Section 3.4.

While T1 and T2 required respondents to review their decisions one-by-one, in T3–T5 decisions
were reviewed in pairs. This pairwise revision procedure was motivated by past research in
psychology [74, 88] and computer science [76], which found that, in certain contexts, people are
better at making comparative judgments than absolute ones.

One of the main difficulties in introducing a reviewing procedure based on pairwise comparisons
is selecting which pairs one should review. Our set of 30 apartments results in 30 choose 2 = 435
possible pairwise comparisons. Since it is not feasible to review all of these pairs, one must select
which pairs to review. A naive approach, employed in treatment T3, would consist of randomly
selecting which pairs to review. An ideal approach would consist of reviewing exactly those pairs
that would lead to an improvement in the quality of decisions with respect to a metric of interest.
In treatments T4 and T5 we utilize algorithmic assistance to identify pairs of apartments for which
people’s estimates are not aligned with the majority’s estimates.
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T3: In T3, respondents were asked to review their decisions in a series of 15 pairwise comparisons
of randomly selected pairs of apartments. Respondents were asked to review 15 pairs of
apartments in order to keep the number of decisions reviewed equal to 30 across all treatments.
The same apartment may have been shown in multiple pairs. Hence, even though the 15
pairwise comparisons provided respondents with 30 opportunities to update their estimates,
this does not imply that they had an opportunity to update their initial estimate for each of
the 30 unique apartments.

Due to its simplicity and lack of an algorithmic component, we treat T3 as a secondary baseline
rather than an experimental condition. This baseline is particularly useful for studying the effects of
T4 and T5, since—unlike the main baseline T1—it utilizes a reviewing procedure based on pairwise
comparisons.
T4 builds upon T3 by including the component of algorithmic assistance. Instead of asking

respondents to review randomly selected pairs of apartments, the decision aid selects the pairs of
apartments that the respondent will review.

T4: While T3 presents respondents with random pairs of apartments, T4 selects pairs where
respondents’ estimates are not aligned with the majority’s view. Specifically, we implicitly
provided machine assistance by asking participants to review pairs of apartments for which
their initial price estimates did not align with most people’s comparative valuations of
those apartments. We trained a model to predict the majority’s comparative valuations of
apartment prices using a dataset of human-annotated pairwise comparisons of apartments
that we gathered, as described in Section 3.4.

Treatment T5 builds upon T4 by additionally providing explicit algorithmic advice. The addition
of explicit advice makes the decision aid used in T5 more similar to the decision aids that are
typically considered in the machine-assisted decision-making literature, such as the decision aid
used in T2.

T5: The format of the review phase and the pair selection procedure remained the same as in
T4, but we additionally explicitly informed people about the difference between their initial
estimates and the predicted comparative valuations of most people.

Hypotheses. We leverage prior research on machine-assisted decision-making in psychology and
HCI (reviewed in Section 2) to form hypotheses about the effects of our interventions T2, T4 and
T5, compared to the control condition T1. As mentioned above, we treat T3 as a second baseline.
We do not hypothesize about the effects of T3, and only study its effects exploratively.

Prior work has demonstrated that algorithmic decision aids can influence people’s decisions [43].
In line with these findings, in H1 we hypothesize that our decision aids will prompt respondents to
revise their estimates. Specifically, we hypothesize that compared to the control condition T1, our
interventions T2, T4 and T5 will lead to:

H1: A higher number of decisions updated in the review phase.
H1’: A higher propensity to update decisions for the particular apartments shown in the review

phase.
We include both hypotheses H1 and H1’ since they capture different aspects of the interventions’

effects on people’s propensity to update decisions. H1 focuses on the overall effect of the intervention
across all apartments, while H1’ captures the effectiveness in prompting respondents to review
their estimate for specific apartments that are shown in the review phase. (These are the same for
T1 and T2.) The effect captured by H1 may be deemed more important in settings where the goal is
to maximize the overall effect across all apartments, while H1’ may be more appropriate if we are
interested in measuring engagement with the algorithmic assistance.
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Furthermore, past research has demonstrated that accurate decision aids help increase the
accuracy of people’s decisions [42, 103]. In H2, we hypothesize that our decision aids—which, as
discussed in Section 3.4, exhibit high predictive accuracy—will do the same. Namely, we hypothesize
that compared to the control condition T1, our interventions T2, T4 and T5 will result in:

H2: A higher accuracy of post-review decisions.
Finally, we expect the decision aids to lead to an increase in the consistency between people’s

responses. We hypothesize that compared to T1, the interventions T2, T4 and T5 will lead to:
H3: A higher degree of consistency between the post-review decisions of different respondents.

Dependent Variables. For each apartment wemeasured the respondents’ pre-review estimates and
post-review estimates. Note that in treatments T3–T5, respondents were not given an opportunity
to update their estimates for some apartments. In those cases, we defined their post-review estimate
to be equal to their pre-review estimate.

To test our hypotheses, we formed dependent variables based on these measurements as follows:
H1 magnitude: Absolute difference between pre and post-review estimates.
H1’ magnitude: Absolute difference between pre and post-review estimates, limited to only

those apartments shown during the review phase.
H1 binary: 0 if the pre and post-review estimates are equal, otherwise 1.
H1’ binary: 0 if the pre and post-review estimates are equal, otherwise 1, limited to only those

apartments shown during the review phase.
H2: Difference between pre-review error and post-review error. The pre- and post-review

errors are calculated as the absolute difference between the respondent’s estimate and the
ground truth for a given apartment. Intuitively, this measure captures the treatments’ effects
on the degree of agreement between respondents’ estimates and the true apartment prices.

H3: Difference between pre-review inconsistency and post-review inconsistency. The pre- and
post-review inconsistency are calculated as the absolute difference between the respondent’s
estimate and the average estimate (namely, the mean value of all respondents’ estimates) for
a given apartment. Intuitively, this measure captures the treatments’ effects on the degree of
agreement between the estimates of different respondents.

Analysis. In Section 4, we report the findings of our confirmatory analyses related to hypotheses
H1–H3. In the text, we report the findings of our statistical hypothesis testing, accompanied with
plots that illustrate our findings using descriptive statistics.
To test our hypotheses we rely on linear mixed models. We note that in hypotheses H1 binary

and H1’ binary our dependent variables are binary. The choice between using a linear and a
logistic regression in such settings has been much debated in prior work, and we refer the readers
to the work of Hellevik [48] for an in-depth discussion on this topic. Hence, we replicated our
analyses for binary dependent variables using both a linear and a logistic regression. The results are
qualitatively the same for both models. In the paper, we report the results of the linear regression
for ease of interpretation of the coefficients and consistency with other hypotheses, in line with
our pre-registration.

Due to our repeatedmeasures design, we include crossed random effects to account for differences
between participants and apartments. We compared models that include a participant or apartment
random effects term to nested models that do not include these random effects terms. To do so,
we used likelihood-ratio tests. The likelihood-ratio tests confirmed that including participant and
apartment random effects terms makes a difference—i.e., there is a significant amount of variation
between participants and apartments accounted for by the random intercepts (p-val <0.001, for all
6 models, and both for participant and apartment random effects terms). To alleviate convergence
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Powered by Qualtrics A

You are here to predict New York City apartment prices in the Upper West Side
. 

There will be a training phase, a testing phase and a review phase:
In the training phase, you will be shown examples of apartments along with
their actual price.
In the testing phase, you will be shown a description of apartments and you
will have to estimate their price.
In the review phase, you will be shown the apartments whose price you
estimated in the testing phase and you could change your estimates if you
wish to do so.

→

Fig. 2. Description of the experimental design shown to participants at the beginning of the experiment.

issues of models with crossed random effects, we initialize the starting values of the parameters to
the estimated parameters of a simpler model—a linear mixed model with a random effects term
for participants only. We further note that we compared our models to fixed effects models with
two-way clustering of standard errors with respect to apartments and participants, trained utilizing
the reghdfe Stata package [22] that implements the estimator described in Correia [21]. We found
the results of both approaches to lead to consistent findings across all hypotheses.

The dependent variables vary across hypotheses as described in the previous subsection. In all of
the models, the experimental conditions are used as the independent variables. We one-hot encode
the five experimental conditions T1–T5 using four binary variables corresponding to T2–T5, and
we treat T1 as the reference category. That is, our models’ unstandardized regression coefficients
capture how the effects of treatments T2–T5 differ from the effects of T1. To compare the effects of
other pairs of treatments we utilize Wald tests to test the equality of the corresponding coefficients.
For the Wald tests, we report Bonferroni-adjusted p-values to account for the multiple comparisons
problem.
In the appendix we conduct an additional exploratory analysis of our data. There we report a

series of descriptive statistics, including results related to the effect of the treatments on other
measures of accuracy and consistency.

3.2 Stimulus Material
Upon opening the study link through the Prolific interface, participants were randomly assigned to
one of the five experimental conditions. All participants first completed an online consent form
and entered their Prolific worker ID. Next, participants were shown an introductory text describing
the task (Figure 2).

Following the approach of Poursabzi-Sangdeh et al. [80], participants were asked to complete a
tutorial in order to familiarize themselves with real estate prices in New York City. The tutorial
consisted of the same ten apartments that were utilized by Poursabzi-Sangdeh et al. [80]. The ten
apartments were shown in random order, and for each apartment respondents were first asked
to estimate its price based on its brief description (Figure 3a), and were then informed about the
apartment’s actual listing price (Figure 3b).
Next, we gathered the first part of our experimental data—the respondents’ pre-review price

estimates. We asked all participants to estimate the prices of the same 30 apartments. The 30
apartments were selected uniformly at random from the 387 apartments in the dataset, excluding
the 10 apartments utilized in the tutorial. The set of apartments was kept constant across all
experimental conditions and respondents. Throughout the experiment, in all five treatments, the
apartments were shown in random order to avoid order bias [46, 84]. The phrasing and format of
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Powered by Qualtrics A

Please provide your response below: 

Task 1/30

Please consider the profile below and estimate the sale price of the apartment.
 
Bedrooms 1.0

Bathrooms 1
Square footage 702
Total rooms 3.0
Monthly maintenance fee $443
Days on the market 28
Subway distance (miles) 0.122
School distance (miles) 0.278

What do you think the apartment was sold for?     

→

(a) Survey instrument used in the tutorial and for
gathering respondents’ pre-review estimates, across
all treatments.

Powered by Qualtrics A

Task: 1/10 

Please see your results below:
 
Bedrooms 1.0

Bathrooms 1
Square footage 550
Total rooms 3
Days on the market 135
Monthly maintenance fee $442
Subway distance (miles) 0.231
School distance (miles) 0.124
Your estimate $500,000
Actual price $824,000

→

(b) Feedback provided to respondents during the tu-
torial, in all experimental conditions.

Powered by Qualtrics A

Please provide your response below: 

Task 1/30

For the apartment below, the computer program estimated its price to be:
$1,800,000  
You initially estimated its price to be: $1,300,000 

Please provide your responses again below. If you wish to change your initial
response, please feel free to do so. 

Bedrooms 2.0

Bathrooms 2
Square footage 1320
Total rooms 4.5
Monthly maintenance fee $1,330
Days on the market 80
Subway distance (miles) 0.168
School distance (miles) 0.225
Your initial estimate $1,300,000

What do you think the apartment was sold for?     

→
(c) Survey instrument used for gathering participants’
post-review estimates in T2. In T1, the machine pre-
diction was omitted.

Powered by QualtricsA

Please provide your response below: 

Please provide your response below:

Difference 1/15

For the two apartments shown below, our computer program estimated that
Apartment A is less expensive than Apartment B.

However, you estimated that Apartment A is equally expensive as Apartment B .

Please provide your responses again below. If you wish to change your initial response,
please feel free to do so. 

 Apartment A Apartment B

Bedrooms 1.0 2.0

Bathrooms 1 2

Square footage 1240 1160

Total rooms 3 4

Monthly maintenance fee $1,170 $1,330

Days on the market 119 71

Subway distance (miles) 0.149 0.026

School distance (miles) 0.323 0.323

Your initial estimate $1,200,000 $1,200,000

What do you think apartment A was sold for?     

What do you think apartment B was sold for?     

→

(d) Survey instrument used for gathering participants’
post-review estimates in T5. In T3 and T4, the machine
prediction was omitted.

Fig. 3. Stimulus material.

the questions and response options were identical to the tutorial (Figure 3a), except that we did not
provide respondents with information about the apartments’ true listing price after they reported
their estimates.
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Demographic Attribute Sample Census
<35 years 56.4% 46%
35–54 years 32.6% 26%
55+ years 10.8% 28%
Male 50% 49%
Asian 10.3% 6%
Black 10.5% 12%
Hispanic - 18%
Mixed 6.1% -
White 68.5% 61%
Other 4.6% 4%

Table 2. Demographics of our study sample, compared to the 2019 U.S. Census [94].

The respondents were then asked to respond to one simple instructed response item, which
served as an attention-check question. Specifically, respondents were asked to “Please respond
to this question by selecting Somewhat disagree as the answer,” using a 5-point Likert scale as
the response options. Similar instructed response items are commonly used for quality assurance
purposes in online surveys, as a means of identifying inattentive or careless respondents [73].

Next, we gathered the second part of our experimental data—the respondents’ post-review price
estimates. Respondents were presented with a text describing the experimental condition they
were assigned to, i.e., they were informed about the procedure they will follow in the review phase.
Participants were asked to review their initial responses in one of five different ways, based on
the experimental condition they were randomly assigned to. The experimental conditions T1–T5
are described in Section 3.1 “Experimental Conditions” and depicted in Figures 3c and 3d. All
respondents reviewed 30 of their estimates. However, depending on the treatment, respondents
reviewed all of their initial estimates one by one (T1 and T2) or a subset of their initial estimates
in a series of pairwise comparisons with possible repetition of the apartments, up to 3 times, in
multiple pairs (T3, T4 and T5).

Finally, we gathered participants’ feedback about their experience of participating in the experi-
ment. Namely, we asked respondents to tell us how much they agree with the following statements
on a 5-point Likert scale from “Strongly agree” to “Strongly disagree”: (i) The study was interesting,
(ii) I would like to take part in a similar study in the future, (iii) The questions were easy to under-
stand, (iv) The study was too long. At the end of the study the respondents also had the option to
provide additional comments that they wanted to share with the researchers.

3.3 Data Collection
We recruited participants from Prolific—an online crowdsourcing platform which caters to scientific
researchers [77]. Using Prolific’s built-in pre-screening capabilities, we targeted respondents who:
(i) are located in the US, (ii) have participated in at least 10 Prolific studies in the past, and (iii) have
an approval rate of at least 95% on these past studies. We additionally utilized Prolific’s option to
provide a sample of respondents that is balanced with respect to gender, due to the current gender
imbalance on the platform [15].
Our goal was to recruit sufficiently many participants to detect medium-sized effects (Cohen’s

𝑑 = 0.5) at the significance level of 𝛼 = 0.05 with power 𝛽 = 0.95. Using the statistical software
G*Power [31, 32], we calculated that a conservative Wilcoxon-Mann-Whitney two-tailed test
requires 110 respondents per treatment group to detect effects of the size, significance level and
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Fig. 4. Average duration of the experiment, per experimental condition, and per experimental phase. The
experimental conditions T1–T5 are shown on the x-axis. The values for the pre-review experimental phase are
shown in blue, while the post-review values are shown in orange. We report mean values calculated across
respondents ± 1.96 standard errors of the mean (SEM).

power of interest. In our study, we have five experimental conditions, leading us to a minimum
sample size of 550 respondents. To account for possible exclusions, incomplete or missing responses,
we increased this estimate by 20% to 660 respondents. In Appendix A.1, we report the values of
Cohen’s d calculated on the gathered dataset.
We recruited a total of 660 participants from Prolific, over the course of several days (30th

November – 3rd December 2022) in order to minimize sampling bias that could occur due to the
day in the week or the time of day [14]. Participants were paid GBP 3.1 for taking part in the
study. On average, participants were paid GBP 12.03 per hour, i.e., approximately USD $14.80 per
hour—well above the federal minimum wage of USD $7.25. The median study completion time was
15 minutes and 28 seconds. The duration of the experiment varied across treatments, as depicted
in Figure 4. As expected, there were no statistically significant differences between the average
time taken to complete the pre-review phase of different experimental conditions. However, we
observe significant differences across treatments in the review phase. Specifically, the review phase
in T1 and T2—where respondents reviewed decisions one-by-one—took significantly less time than
in T3–T5, where respondents reviewed pairs of decisions. When comparing the duration of the
pre-review and review phase, T1 and T2 led to a significant increase in speed. On the other hand,
the review phase in T4, where meaningfully selected pairs were presented without explicit advice,
took more time compared to the pre-review phase. In T3 and T5 both the pre-review phase and the
review phase took a similar amount of time to complete.
We report the demographics of our sample in Table 2. Since none of our hypotheses rely on

demographic data, we did not ask our respondents to complete a demographics survey, in order to
minimize the duration of our experiment, and to align with the data minimization principle. Hence,
we report the data about our participants that we had access to through the crowdsourcing platform
Prolific. Please note that this demographic data was self reported by Prolific crowdworkers directly
to Prolific. Compared to the US census, our sample is younger, in line with typical samples recruited
via online crowdsourcing platforms [49, 78, 86]. In line with the gender balancing pre-screening
criteria employed during sampling, our sample is balanced with respect to gender. In terms of
ethnicity, we are not able to directly compare our sample to the US census, since Prolific’s simplified
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ethnicity prompt did not offer "Hispanic" as a response option. However, we note that Asian
respondents are slightly over-represented and Black respondents are slightly underrepresented
compared to the US census data.

Upon completing the study, participants were asked to provide feedback about their experience
of taking part in this study. Most was positive. On a 5-point Likert scale from “Strongly agree”
(coded as 5) to “Strongly disagree” (coded as 1), participants agreed with the statements “The
study was interesting” (𝜇 = 4.1 ± 1.0 ), “I would like to take part in a similar study in the future”
(𝜇 = 4.4 ± 0.9), and “The questions were easy to understand” (𝜇 = 4.6 ± 0.8), while they neither
agreed nor disagreed with the statement “The study was too long” (𝜇 = 2.7 ± 1.1).
For the purposes of our analyses, we excluded all responses from participants who did not

complete the full study (i.e., missing or incomplete responses), or who failed the instructed response
attention check questions. A total of 17 respondents (2.6%) failed the attention check, leaving us
with a final sample of 643 respondents.

3.4 Decision Aids
3.4.1 Developing the Decision Aid Utilized in T2.
For T2, we developed a typical example of a decision aid within the judge-advisor system (JAS)
paradigm [9]. It is trained to accurately estimate real estate prices. The algorithm’s accurate advice
can then help steer people towards making accurate estimates of real estate prices. That is, this
decision aid was designed to be aligned with our hypothesis H2.

While it was not explicitly designed to increase people’s consistency (H3), we still expect that it
will succeed in doing so. If the decision aid successfully steers people towards its advice, it will
trivially lead to an increase in inter-respondent consistency.
Training Procedure.We trained a linear regression model that used the apartment’s attributes
as independent variables (full list of features shown in Figure 3a), and the apartment price as the
dependent variable. We normalized the independent variables to have zero mean and unit variance.
We considered models with L1 (lasso) and L2 (ridge) regularization and without regularizers,
and picked the regularization hyperparameter values which resulted in the highest coefficient of
determination (𝑅2) on a 20% held out validation set.
Evaluation. The model without any regularizer yielded the highest 𝑅2 value: 85.86 on a test set
comprised of 30% of the data. The mean absolute error of this model was $143,200. Amongst all of
the features used in the final model, “Square footage” exhibited the strongest positive correlation
with apartment price (with a weight of 1.08), while “Total rooms” exhibited the strongest negative
correlation with price (with a weight of -0.3).
Format of Machine Advice. In T2, we provided this model’s estimates rounded to the nearest
$100,000 as machine advice, for ease of interpretation.

3.4.2 Developing the Decision Aid Utilized in T4 and T5.
The decision aid developed for T4 and T5 differs from the decision aids typically studied in the
machine-assisted decision-making literature. Instead of predicting apartments’ true prices, it is
trained to predict people’s comparative valuations of apartments. The algorithm’s advice can then
help steer people towards making estimates that are consistent with other people’s estimates. That
is, this decision aid was designed to be aligned with our hypothesis H3.

Despite being trained only to predict human comparative valuations of apartments, the wisdom
of the crowd enabled this decision aid to accurately predict the true comparative valuations of
apartments as well. Therefore, we expect it to also succeed in increasing the accuracy of people’s
responses (H2).
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Data Gathering. In order to build this tool, we gathered a dataset of human comparative valuations
of apartments. We randomly selected 1000 unique pairs of apartments from our dataset and split
them into 40 batches of 25 pairs. We recruited a total of 850 Prolific workers, who were randomly
assigned to one of the batches. After excluding respondents who failed the attention-check question,
we were left with 806 participants. From these, we excluded the last 6 responses so that each batch
was labelled by exactly 20 participants. We gathered the data over several days (8th November –
11th November 2022) to minimize any bias caused by the time at which the data was gathered [14].
The participants were paid GBP 2 for taking part in the study, resulting in an average hourly rate
of approximately USD $13.50.

The stimulus material and the experimental procedure were similar to the ones used in the main
experiment, described in 3.2. The participants completed a consent form and entered their Prolific
worker IDs, prior to observing an introductory text similar to the one shown in Figure 2. The
participants then completed the same tutorial as in the main experiment, in which they were asked
to estimate the prices of 10 apartments prior to observing their actual listing price, as shown in
Figure 3b. Finally, respondents were asked to compare pairs of apartments, which were presented
as shown in Figure 3d. Specifically, they were asked to estimate if “Apartment A” or “Apartment B”
were more expensive. Additionally, they were asked how confident they were in their estimate on
a 5 point Likert scale, ranging from “Completely guessing” to “Completely confident.” To avoid
order bias [46, 84], both the order of the 30 pairs of apartments and the order of apartments within
a given pair were randomized.
Training Procedure. Using this data, we trained a cross validated logistic regression classifier with
L2 regularization to predict which apartment is perceived as more expensive in a given pair. To form
the independent variables for our classifier, we subtracted the features of pairs of apartments (shown
in Figure 3a) from one another. We then normalized them to have zero mean and unit variance.
As the dependent variable we used the confidence weighted majority votes of the participant’s
responses. E.g., if a participant was “Completely guessing” their vote would count as 1

5 and if they
were “Completely confident” it would count as 1.
Evaluation. In the trained classifier “Square footage” was the most important feature, i.e., it had
the largest absolute weight (36.18). The second most important feature was “Maintenance cost”
(18.3). Our classifier predicted people’s comparative valuations of apartments with an accuracy of
98.4%, cross-validated on five randomly chosen 30% test sets.

While this classifier was trained to predict people’s comparative valuations of apartments, it also
exhibited a high degree of accuracy in predicting apartments’ true comparative valuations. Namely,
the accuracy of predicting the pairwise order of apartments with respect to the ground truth prices
was 88.5%. In practice, this tool would have an even higher accuracy since we prioritized giving
advice for pairs where the tool had high confidence. Such pairs demonstrated a higher accuracy
compared to those pairs where the decision aid had low confidence. The high accuracy of this tool
led us to hypothesize that the decision aid used in Treatments T4 and T5 can increase not only the
consistency (H3) of people’s responses, but also the accuracy (H2) of the participant’s estimates,
despite being trained only on human annotations instead of ground truth labels.
Format of Machine Advice. In order to provide assistance to participants in T4 and T5, we used
the aforementioned classifier. We utilized this decision aid to identify pairs of apartments for which
people’s estimates did not align with the majority’s comparative valuation. We prioritized giving
advice for pairs where (i) our classifier was able to accurately predict a typical person’s comparative
valuation, and (ii) the predicted ordering did not match the respondent’s ordering.

First, we converted the 30 apartments used in the main study into 435 pairs by taking all possible
combinations, and predicted which of the apartments in each pair would be perceived as more
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(a) H1 binary: Fraction of decisions updated. The
y-axis shows the fraction of the 30 initial decisions
that were updated in the review phase.

(b) H1 magnitude: Magnitude of updates. The y-axis
shows by how much the 30 initial decisions were up-
dated in the review phase.

Fig. 5. H1: Effect of the interventions on people’s propensity to update decisions, across all 30 apartments. The
experimental conditions T1–T5 are shown on the x-axis. We report mean values calculated across respondents
± 1.96 standard errors of the mean (SEM).

expensive by most people. Then we ordered the pairs in a decreasing order with respect to the
classifier’s confidence. In T4 and T5 we iterated through this list, and asked participants to review
their initial decisions which did not align with our classifier’s predictions. E.g., if they initially
estimated that Apartment A cost $600, 000 and that Apartment B cost $900, 000, while the classifier
predicted that most people would perceive Apartment A as more expensive than Apartment B,
participants could have been asked to review this pair of apartments. Participants were asked to
review 15 pairs of apartments from this list. A single apartment was limited to appear in at most
3 pairs, to avoid negative reactions from repeatedly being presented with the same information.
While selecting the pairs to show respondents, we took into account the decisions they may have
updated during the review process.

4 Results
In this section, we present the results of our analysis. We compare the baseline reviewing procedure
T1 to our interventions T2, T4 and T5, in terms of their effect on people’s propensity to update their
initial estimates (H1 and H1’), and the accuracy (H2) and consistency (H3) of people’s estimates.

4.1 H1: Overall Change in Decisions
In all five experimental conditions, we observe that people update some of their 30 initial decisions
in the review phase. However, the number of decisions that are updated and the magnitude of
these updates varies substantially between the experimental conditions. Compared to the control
condition T1 our interventions T2, T4 and T5 lead to a higher propensity to update decisions in
the review phase. That is, our results support H1. This holds both in terms of the number of
decisions that were updated (H1 binary) and the magnitude of the change (H1 magnitude).
H1 binary: Number of Decisions Updated. Descriptively, we find that the fraction of decisions
that are updated varies between treatments (first column of Table 3 and Figure 5a). In both T1 and
T3 people update approximately 29% of their decisions, i.e., they update the estimated prices of 8.7
out of 30 apartments on average. In T4 and T5 people update a larger fraction of their decisions
than in T1 and T3—close to 39% (11.8/30 apartments) and 43% (12.8/30 apartments) respectively.
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H1: change, H1’: change, H1: change, H1’: change, H2: H3:
bin., overall bin., specific mag., overall mag., specific accuracy consistency

T2 0.383*** 0.383*** 113634.1*** 113634.1*** 97299.5*** 119916.8***
(0.0216) (0.0260) (9608.2) (13339.4) (6022.1) (6840.6)

T3 0.00179 0.157*** 11897.4 52257.4*** -7141.5 -10044.1
(0.0215) (0.0264) (9589.6) (13489.2) (6010.5) (6827.3)

T4 0.103*** 0.395*** 55471.8*** 140695.3*** 25568.7*** 24214.8***
(0.0218) (0.0269) (9685.0) (13713.6) (6070.3) (6895.3)

T5 0.138*** 0.449*** 49783.9*** 130046.7*** 20490.2*** 24042.4***
(0.0216) (0.0266) (9608.2) (13596.1) (6022.1) (6840.6)

Cons. 0.290*** 0.290*** 65461.5*** 65461.5*** 7563.6 2271.4
(0.0212) (0.0216) (11207.0) (13277.9) (6679.6) (5555.7)

𝑁 19290 14659 19290 14659 19290 19290
Table 3. Linear mixed models with crossed random effects for participants and apartments. The dependent
variables for different hypotheses are described in Section 3.1. In all six models, the four independent variables
T2–T5 correspond to a one-hot encoding of the experimental conditions, and T1 is treated as the reference
category. I.e., intuitively, the row “Cons.” shows the estimated value of the constant term (or intercept) that
corresponds to the effects of treatment T1, while the rows T2–T5 show how the effects of these treatments
differ compared to T1. Hence, to reason about the effects of T2–T5, one needs to sum up the values of the
constant term and the treatment of interest. N denotes the number of data points used to fit a specific model.
Each of our 643 respondents answered questions about 30 apartments, resulting in a total of 19290 data
points. Please note that in the analysis for H1’ some of the data points are discarded, as described in Sections
3.1 and 4.2. Standard errors are shown in parentheses. Statistical significance of coefficients is indicated as
follows: * p < 0.05, ** p < 0.01, *** p < 0.001.

The treatment T2 has proven to have the strongest effect on people’s propensity to update their
decisions, with approximately 67% of decisions (20.2/30 apartments) being updated.

These descriptive observations are corroborated by our statistical analyses. The regression in the
first column of Table 3 shows that all five treatments significantly influence human decisions. T2,
T4 and T5 have a significantly stronger effect than T1, while the effect of T3 was not significantly
different than that of T1. Subsequent Wald tests performed on the estimated model confirmed
that T4 and T5 also have a stronger effect than T3 (𝑝 < 0.001), but did not identify a significant
difference between the effects of T4 and T5 (𝑝 = 0.35). Finally, T2 was shown to have a significantly
stronger effect than all of the other treatments (𝑝 < 0.001).

That is, we find that people are more likely to update their decisions when reviewingmeaningfully
selected pairs of apartments and when machine advice is provided.
H1 magnitude: Magnitude of Updates. Our findings related to the magnitude of the changes
are aligned with the findings about the number of decisions updated (third column of Table 3
and Figure 5b). In T1, people update their decisions by approximately $65,461 on average. In T3,
the average update is close to $77,359. The effect of both T1 and T3 is significantly different than
zero (𝑝 < 0.001), and the difference between these two treatments is not statistically significant
(𝑝 = 0.214). In T4, the average magnitude of the change was close to $120,933. This is a significant
increase compared to both T1 and T3 (𝑝 < 0.001). In T5, people updated their decisions by $115,245
on average, which is significantly more than T1 and T3 (𝑝 < 0.001), but not significantly different
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(a) H1’ binary: Fraction of decisions updated. The
y-axis shows the fraction of the decisions shown in
the review phase that were updated.

(b) H1’ magnitude: Magnitude of updates. The y-axis
shows by how much the decisions shown in the review
phase were updated.

Fig. 6. H1’: Effect of the interventions on people’s propensity to update decisions, across the subset of
apartments that were shown in the review phase. The experimental conditions T1–T5 are shown on the x-axis.
We report mean values calculated across respondents ± 1.96 standard errors of the mean (SEM).

than T4 (𝑝 = 1). Finally, people changed their decisions by close to $179,096 in T2. The magnitude
of this change is significantly larger than in any of the remaining treatments (𝑝 < 0.001).

In short, we find that people update their decisions by a larger amount when they review them
as a series of meaningfully chosen pairwise comparisons and when they observe machine advice.

4.2 H1’: Propensity to Change Particular Decisions
H1 considers the overall effect of our interventions across all 30 apartments. However, in T3–T5
participants were able to update only a subset of their initial decisions. With H1’ we account for
this and focus on the effect of our interventions across the apartments shown in the review phase.

In all five experimental conditions, respondents updated some of the decisions they were shown
in the review phase. As in the analysis for H1, the number of decisions that were updated and the
magnitude of the updates varied significantly between treatments. When compared to the baseline
treatment T1, our interventions T2, T4 and T5 result in a higher propensity to update decisions
for the particular apartments shown in the review phase. I.e., our findings support H1’. Again,
this holds both for the number of decisions that were updated (H1’ binary) and the magnitude of
change (H1’ magnitude).
H1’ binary: Number of Decisions Updated. The second column of Table 3 and Figure 6a provide
information about the fraction of apartments shown in the review phase that respondents updated.
For treatments T1 and T2 the results are identical to those related to H1, since all 30 apartments
were shown in the review phase. Namely, in T1 respondents updated 29% of their decisions (8.7/30
apartments), while they updated 67% of their decisions (20.2/30 apartments) in T2. For T3–T5,
results change substantially once we account for the fact that respondents could not update all 30
apartments in the review phase. While T3 was not significantly different than T1 for H1, for H1’ we
identified a significant difference between these two treatments. Namely, respondents updated 44%
of the decisions they were shown in the review phase in T3. The effects of T4 and T5 were even
stronger, with respondents updating 69% and 74% of decisions they had access to in the review phase.
Our statistical analyses indicate that all treatments have significantly stronger effects than the

baseline treatment T1 (𝑝 < 0.001). Treatments T4 and T5 are not significantly different from each
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(a) The y-axis shows the average error in people’s de-
cisions. The error in pre-review decisions is shown in
blue, while the post-review error is shown in orange.

(b) The y-axis shows the difference between the error
in people’s pre-review and post-review decisions.

Fig. 7. H2: Effect of the interventions on the accuracy of respondents’ decisions. The experimental conditions
T1–T5 are shown on the x-axis. We report mean values calculated across respondents ± 1.96 standard errors
of the mean (SEM).

other (𝑝 = 0.1497), but they both have stronger effects than T3 (𝑝 < 0.001). Unlike for H1, T2 is not
the treatment with the strongest effect. While it has a significantly stronger effect than T1 and T3
(𝑝 < 0.001), it is not significantly different from T4, and it has a weaker effect than T5 (𝑝 = 0.0421).

On a high level, we found that people are more likely to update their decisions when asked to
review them as a series of pairwise comparisons and when they are provided with machine advice.
H1’ magnitude: Magnitude of Updates. The results of our analysis about the magnitude of
changes are in line with our results about the amount of decisions that were updated (fourth column
of Table 3 and Figure 6b). For T1 and T2, the results are the same as for H1: people update their
decisions by approximately $65,461 in T1 and by $179,096 in T2. In T3–T5 the magnitude of the
updates is significantly higher than we saw in the analysis of H1, with an average update close to
$117,719 in T3, $206,157 in T4 and $195,508 in T5.

T1 has a significantly weaker effect than the remaining four treatments (𝑝 < 0.001), and T3 is in
turn has a significantly weaker effect than the remaining three treatments (𝑝 < 0.001), which are
not significantly different between each other.
In other words, respondents updated their decisions by a larger amount when reviewing them

as a series of pairwise comparisons and when they had access to machine advice.

4.3 H2: Accuracy of Respondents’ Decisions
Next, we study the impact of our interventions on the quality of the decisions—the accuracy of
people’s estimates. We find that interventions T2, T4 and T5 significantly improve the accuracy of
people’s post-review decisions, compared to the baseline treatment T1. That is, our results are in
line with H2.

In H1 and H1’ we found that all five of our experimental conditions influenced people’s decisions.
However, not all of the reviewing procedures led to an increase in the accuracy of people’s decisions.
As shown in the fifth column of Table 3 and in line with Figure 7, the reviewing procedure utilized
in T1 and T3 did not lead to a significant increase in the accuracy of people’s post-review estimates,
compared to their initial estimates. However, the remaining treatments did have a significant
positive effect. Both T4 and T5 led to an increase in accuracy that is significantly higher than the
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(a) The y-axis shows the average inconsistency in
people’s decisions. The inconsistency in pre-review
decisions is shown in blue, while the post-review
inconsistency is shown in orange.

(b) The y-axis shows the difference between the in-
consistency in people’s pre-review and post-review
decisions.

Fig. 8. H3: Effect of the interventions on the consistency between respondents’ decisions. The experimental
conditions T1–T5 are shown on the x-axis. We report mean values calculated across respondents ± 1.96
standard errors of the mean (SEM).

one observed in T1 and T3 (𝑝 < 0.001). In T4 people’s estimates of apartment prices improved by
an average of $33,132, and in T5 by $28,054. The difference between T4 and T5 was not significant
(𝑝 = 1). T2 led to a significantly higher improvement in accuracy (𝑝 < 0.001) than the remaining
treatments—people’s post review estimates were closer to the ground truth by an average of
$104,863, compared to their initial estimates.

That is, while all treatments influenced people’s decisions, not all of them led to an improvement
in the accuracy of people’s decisions. Only reviewing meaningfully selected pairs of apartments
and having access to machine advice increased the accuracy of people’s estimates.

In addition to this pre-registered confirmatory analysis, in Appendix A.2 we present the results
of additional exploratory analyses about the agreement between respondents’ estimates and the
ground truth. We find that the results presented in this subsection are robust with respect to
an alternative measure of accuracy. We also offer descriptive insights about the directionality of
people’s errors. Namely, we find that our respondents systematically underestimate apartment prices
in their initial estimates, and that the reviewing procedure reduces this bias in the directionality of
respondents’ errors.

4.4 H3: Consistency Between Respondents’ Decisions
In this subsection, we investigate the effects of our interventions on the consistency between
the decisions of different respondents. The patterns we identify are qualitatively similar to those
related to the accuracy of people’s decisions (H2). Namely, our interventions T2, T4 and T5 lead
to a significantly higher increase in consistency between the post-review decisions of different
respondents, compared to the control condition T1. That is, the results support H3.

As shown in the sixth column of Table 3 and in line with Figure 8, treatments T1 and T3 do not lead
to an increase in people’s consistency, while T2, T4 and T5 do. Compared to the consistency between
respondents’ pre-review estimates, T4 and T5 increase respondents’ post-review consistency by
$26,486 and $26,314 respectively. The difference between T4 and T5 is not significant (𝑝 = 1), and
the increase observed in both of these treatments is significantly higher than the effects observed
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T1 and T3 (𝑝 < 0.001). Treatment T2 increases the degree of consistency in people’s post-review
decisions by an average of $122,188, and this effect is significantly higher than the ones observed
in any of the other treatments (𝑝 < 0.001).

On a high-level, we found that while all treatments influenced the respondents’ decisions, some
of them did not have an impact on the degree of consistency between the estimates of different
respondents. Comparisons of meaningfully selected pairs of apartments and access to machine
advice have yet again proven to be effective strategies.

In addition to this pre-registered confirmatory analysis, we exploratively study a broader set of
measures of consistency in Appendix A.3. In short, we find that our results about the effects of our
treatments on consistency are robust across a variety of measures of inter-annotator consistency.

4.5 Exploratory Analysis: Agreement with Machine Advice
In Sections 4.3 and 4.4, we studied the degree of agreement between our respondents’ estimates
and the ground truth (Section 4.3), and the agreement between the estimates of different respondents
(Section 4.4). For treatments that utilize algorithmic assistance—that is, treatments T2, T4 and
T5—we can compare our respondents’ estimates to another variable of interest: machine advice. In
Appendix A.4, we report the details of an exploratory analysis of the agreement between people’s
estimates and the predictions made by the algorithmic decision aids they had access to. Here, we
briefly summarize our findings.
At a high-level, we find that respondents take machine advice. When given the opportunity to

review their decisions in T2, T4 and T5, respondents’ update the majority of their estimates in a
way that aligns with the decision aids’ predictions—for example, increasing their estimate when
the decision aid’s prediction is higher in T2. Nevertheless, a nonnegligible fraction of the time,
respondents choose not to update their estimates. Still, respondents rarely go against machine
advice; few estimates are updated in the direction opposite of the decision aids’ predictions.

5 Discussion
We conclude this work with a discussion about the implications (Subsection 5.1) and limitations
(Subsection 5.2) of our research, and a concluding summary of our work (Subsection 5.3).

5.1 Implications
T2 - Traditional Machine Advice. Reviewing past decisions with access to machine advice has
proven to be more effective than doing so without machine advice, not only in terms of people’s
propensity to update their decisions (H1), but also in terms of increasing the accuracy (H2) and
consistency (H3) of their decisions. Our findings related to H1 and H2 are in line with recent
research on machine-assisted decision-making and real world applications that have demonstrated
that people are willing to take machine advice, particularly when the advice is highly accurate
[103] (as is the case in the real estate appraisal setting we consider). We contribute to this line
of research by further demonstrating the effectiveness of traditional decision aids in increasing
between-respondent consistency (H3).
Our results indicate that in settings where (i) one has access to ground truth data that enables

the development of accurate decision aids, and (ii) it is deemed normatively desirable or acceptable
to explicitly steer people towards making decisions in line with machine predictions, traditional
algorithmic decision aids are an effective tool for doing so.
T3 - Randomly Selected Pairwise Comparisons. Past research in psychology [74, 88] and
computer science [76] has found that people are better at making comparative judgments than
absolute ones in certain contexts. Still, people’s pairwise preferences are known to be inconsistent
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[1, 11, 58]. Building upon both lines of research, we investigated if people’s decisions may benefit
from being reviewed in a series of randomly selected pairwise comparisons, instead of one-by-one.

If this intervention had proven to be effective, it would have important design implications. This
intervention would be suitable for low-resource environments, where it is difficult or impossible
to develop machine decision aids, due to a lack of data for training them, the inherent difficulty
of making accurate predictions in the decision-making task at hand, or a lack of well-established
notions of objective ground truth.
However, in our experiment, we did not find a significant difference between the accuracy

and consistency of decisions that were reviewed one-by-one and those reviewed in randomly
selected pairs. Hence, our results suggest that it might not be sufficient to switch from absolute to
comparative decision-making when reviewing decisions, without carefully considering how one
selects which pairs of decisions to review.
T4 - Consistency-Based Pairwise Comparisons. In T3, respondents are simply asked to review
random pairs of decisions, but in T4 the reviewing procedure is guided by a machine decision
aid. At first, this may not be evident—traditional decision aids (such as the one utilized in T2)
usually attempt to predict correct decisions, and provide people with those predictions as advice.
The decision aid used in T4 is quite different—it attempts to predict typical human decisions,
and asks people to review their decisions when they do not match the predicted ones. That is,
the algorithmic assistance in T4 helps people determine which pairs of decisions to review. This
format of algorithmic assistance is—to the best of our knowledge—novel in the machine-assisted
decision-making literature.

Prior research identified scenarios in which people’s decision quality improves upon switching
from absolute to comparative decision making [74, 76, 88]. We found that switching from an
absolute to a comparative reviewing procedure is an effective strategy for increasing the accuracy
and consistency of respondent’s decisions only when respondents compare meaningfully selected
pairs of inputs. The ineffectiveness of T3 demonstrates that a naive approach of randomly selecting
pairs of decisions is not sufficient to reap the benefits of pairwise comparisons. In T4, our goal was
to identify an approach for selecting pairs that would lead to an improvement in two metrics of
interest—accuracy and between-respondent consistency. We have demonstrated that our approach
succeeds in doing so.

While the decision aid utilized in T4 is less effective than the one from T2, it has two important
advantages: (i) it does not require access to ground truth data, and (ii) it does not provide explicit
advice on how to update decisions. The former makes this approach suitable for increasing accuracy
and consistency even in environments where one does not have access to ground truth data, or
for increasing consistency even in settings where the notions of “ground truth” and “accuracy”
cannot be meaningfully defined. The latter makes it applicable even in settings where it is not
normatively desirable to explicitly steer people towards specific decisions (e.g., due to concerns
about silencing minority opinions), but to prompt people to review their own decisions and make
them mutually consistent. That is, this intervention may be an excellent candidate for future
research on intra-annotator notions of consistency.
T5 - Consistency-Based Pairwise Comparisons with Advice. Most research on machine-
assisted decision-making (e.g., [43, 80, 103], reviewed in detail in Section 2) focused on algorithmic
decision aids that provide explicit advice to human decision makers. Given the plethora of evidence
about the effectiveness of explicit advice, one may have expected T5 to be more effective than T4.
However, perhaps surprisingly, T5 was not significantly more effective than T4 with respect to
any of the dependent variables we studied. Reviewing past decisions as a series of meaningfully
selected pairwise comparisons is equally effective with and without explicit machine advice. Hence,
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our results suggest that when it is deemed normatively undesirable to explicitly steer people
towards specific response options, one can omit machine advice without impeding the effects of
the reviewing procedure on the accuracy and consistency of human decisions.
This lack of a significant difference between T4 and T5 showcases the effectiveness of more

subtle, implicit forms of algorithmic guidance. The algorithmic guidance in T4 is perhaps closer to a
nudge [92] than to decision aids in the judge-advisor system (JAS) paradigm [9] typically studied in
the machine-assisted decision-making literature. The effectiveness of nudging has been extensively
studied in the social science literature [92], but also in CS, particularly in HCI [13] and research
on recommender systems [53]. Our results suggest that research on AI-assisted decision-making
could also benefit from considering a broader set of algorithmic interventions, including implicit
advice and subtle nudges.
In future research, it would be interesting to study why explicit machine advice does not have

an effect in this setting. We hypothesize this might be caused by its redundancy: when comparing
two apartments, respondents might be able to infer the majority’s comparative valuation of these
apartments. Research on incentive mechanisms that rely on people’s ability to predict others’
responses provides some backing to this hypothesis. Namely, peer prediction mechanisms [75], in
particular Bayesian Truth Serums and similar methods [59, 81–83], ask respondents to predict what
others will report in order to design proper incentives that incentivize truthful reporting. If people
are able to accurately predict the majority’s comparative valuations, explicit machine advice may
not provide any additional information to respondents, and hence have no effect on their decisions.
Future studies can test this hypothesis by evaluating people’s ability to predict others’ pairwise
comparisons.

5.2 Limitations and Future Work
Notions of Consistency. In this paper, we explored the effects of our interventions on several
measures of inter-annotator consistency. In future work, it would be interesting to go beyond
inter-annotator consistency, and consider notions of intra-annotator consistency.
The simplest extension would be the study of intra-annotator consistency across time. That is,

instead of measuring the degree of consistency between different respondents for the same input,
one could measure the degree of consistency of the same annotator for the same input in different
points in time. This extension requires minimal changes to our experimental design—namely, it
requires conducting a longitudinal human-subject study. This line of work could provide important
insights about moderating the effects of cognitive biases that lead to a person’s inconsistency
through time, such as dynamic inconsistency and hyperbolic discounting [67, 91], or the (contested)
“hungry judge” effect [24].1

Intra-annotator consistency across time is closely related to counterfactual questions such as
“Would the decision-maker have made the same decision in a different point in time?” A different
notion of consistency—intra-annotator consistency across inputs—addresses the question “Does the
decision-maker make similar decisions for similar inputs?” This line of research is closely related
to research on individual fairness.
A central problem in studying both intra-annotator consistency across inputs and individual

fairness lies in defining the similarity metric which determines which inputs should be treated as
similar. Prior work on individual fairness has assumed such similarity metrics to be given [27], or
defined them based on the inputs’ ground truth labels [54, 66], distance in transformed feature
spaces that align with certain distributive fairness criteria [60, 104], or—as we implicitly did in

1While the “hungry judge” effect [24] is often referenced as an argument in favor of introducing algorithmic assistance in
legal decision making, the validity of the study’s findings has been much debated in recent literature [16, 37].
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T4 and T5—based on human judgments about input similarity [52, 55, 61, 98]. As a promising
direction for future work, we highlight the study of intra-annotator consistency across inputs with
personalized similarity metrics, i.e., the development of methods for identifying decisions that are
outliers, inconsistent with the other decisions made by the same respondent.
In this work we study methods for alleviating inter-annotator inconsistency. Deciding which

notion of inconsistency is appropriate to apply in a given setting is inherently a normative question.
Hence, we invite future work not only on formalizing and operationalizing different notions of
inconsistency, but also philosophical and policy discussions on the desirability of different—and as
discussed below, any—notions of consistency in specific settings.
Benefits of Human Inconsistency. This paper focused on settings where inconsistency between
multiple decision-makers may be deemed undesirable. As such, the proposed methods are not
applicable and should not be applied in settings where diversity in people’s beliefs, perceptions,
and behavior may be beneficial, or considered normatively desirable.
Diversity in people’s decisions may reflect the differences in their skill set and background

knowledge, and these differences can be exploited to improve decision-making quality [101].
Diversity in the composition of groups increases the diversity in the problem solutions that team
members propose, which in turn increases the quality of group decisions [100]. Heterogeneity
in teams can benefit group performance, since the diversity in the perspectives of different team
members can foster creativity and innovation [85].

Furthermore, people’s beliefs, perceptions and behavior are known to correlate with their socio-
demographics and life experiences. For instance, the rich literature on Moral Foundations Theory
found that sociodemographic characteristics such as political views [38, 39], gender [39], and ed-
ucational attainment [97] correlate with people’s moral views. Lived experiences, such as growing
up during an economic recession [36] or experiencing economic shocks [4, 72], correlate with
people’s preferences regarding social policies. Socio-demographic factors [3, 44, 79] and people’s
life experiences [44] were also found to correlate with people’s moral judgments about algorithmic
fairness. That is, the decisions made by members of minority groups may systematically differ from
those made by members of the majority. Therefore, methods for reducing inconsistency between
people may—inadvertently or on purpose—explicitly steer people’s decisions toward the majority’s
view, thereby silencing the minorities’ views.

Hence, prior to applying any methods for reducing inconsistency between decision-makers, it is
crucial to understand the sources of this variation, and to evaluate whether reducing it would be
appropriate and normatively desirable in the decision-making task at hand.
Generalizability to Other Domains. In this work, we focus on a real estate appraisal scenario.
While we find large and statistically significant effects of our interventions for the task at hand,
we invite future work that will systematically explore which types of scenarios our findings
generalize to. We opted for this scenario because many laypeople have prior experience with
property valuation (e.g., searching for, purchasing or selling real estate), but most laypeople do
not make highly accurate estimates of real estate prices. The task we considered may be in the
sweet spot between too difficult and too easy for our respondent sample. We hypothesize that our
findings may not generalize to tasks on either of the extremes.
For tasks that people find easy, such as visual recognition tasks, interventions may not have

an effect if people already exhibit high degrees of accuracy and consistency, hence not allowing
room for significant improvement along either dimension. For tasks that people find difficult, such
as criminal risk prediction, both people and algorithms may exhibit low levels of accuracy. For
instance, in a pilot study we conducted using the ProPublica COMPAS dataset [7], algorithmic
advice (T2, with an accuracy of 58%) did not have a significant impact on consistency since it
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increased consistency for some cases, while decreasing it for others. The latter typically occurred
for the non-negligible number of cases where respondents initially made correct predictions, but
incorrect machine advice steered them away from their initial responses, decreasing their accuracy
and consistency levels.
We further note that we studied the effects of algorithmic assistance on respondents’ accuracy

and consistency in a task where (i) the notion of ground truth is well-defined, and (ii) one could deem
consistency between professionals to be normatively desirable. However, the notions of accuracy
and consistency we studied may not be suitable for every decision-making task. For tasks where
there is no well-defined notion of ground truth, such as subjective tasks, the notion of accuracy
cannot be well-defined either. For subjective tasks, it may also be deemed normatively undesirable
to promote inter-annotator consistency, and one may be in favor of intra-annotator consistency, or
a different metric instead. In short, the problem of choosing an appropriate evaluation metric is
a policy question that requires an understanding of the underlying normative goals of utilizing
algorithmic assistance in the decision-making task at hand.
Interventions. In this paper, we report the effects of five different interventions. In pilot studies
we considered one additional intervention, where we asked respondents to review all of their initial
estimates on the same page, sorted by the apartment prices they estimated. We initially conjectured
that this may allow respondents to conduct comparisons of apartments that they deemed to have
similar prices. However, since (i) this approach was not scalable to a large number of decisions, and
(ii) the effects of this treatment showed no statistically significant difference from T1 and T3 in our
pilots, we omitted it from our main study for brevity.
We invite future work that would explore an even broader set of interventions. As reviewed

in Section 2, prior work on human advice taking behavior [9] and on machine-assisted decision-
making has identified numerous factors that influence how people take advice, including the
decision aid’s accuracy [103], explainability [80], and the stakes associated with the decision-
making task [43], and future work could incorporate some of these factors in their interventions.
Future work could also build upon T4 and T5 by developing decision aids that not only predict
which of two apartments is perceived as more expensive, but also identify apartments that are
perceived to be equally expensive. Identifying data points that are perceived as deserving of similar
outputs may be interesting not only for the study of noise in human decisions, but also for research
on individual fairness.
Respondent Samples. In our experiment we recruited a large and demographically diverse set of
laypeople from the US. Future work could explore if our findings replicate in other cultures beyond
the US. Additionally, it is worth noting that our sample consisted of laypeople, and it is possible
that expert judgments of professionals such as real estate agents systematically differ from the
perceptions of our lay sample. For instance, professionals may be substantially more accurate in
their predictions, thereby having fewer opportunities to benefit from algorithmic advice. Hence, it
may be interesting to replicate our experiment with industry professionals.

5.3 Conclusion
In this work, we studied methods for alleviating inconsistency in human decision-making. We
identified several approaches that effectively influence human decisions, improving their accuracy
and consistency with other respondents. We identified methods that are applicable to a wide variety
of scenarios, including for settings where one has access to ground truth data for training decision
aids (T2), as well as for settings where one only has access to human annotations (T4 and T5), but
none for settings where no data is available (T3). All of the treatments that significantly improved
decision accuracy and consistency relied on algorithmic assistance, be it explicit (T2 and T5) or
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implicit (T4). As a promising avenue for future work, we see the study of a broader set of notions
of inconsistency, including intra-annotator consistency.
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A Appendix
In the main paper, we presented the results of our pre-registered confirmatory statistical analyses.
In this appendix, we provide more details about our data and present the results of additional
exploratory analyses.

In Appendix A.1, we provide more details about the effect sizes associated with the pre-registered
hypotheses H1–H3. In Appendix A.2 and A.3, we present supplementary results related to H2 and
H3 respectively. Namely, in Appendix A.2 we explore the agreement between people’s responses
and ground truth labels, while in Appendix A.3 we explore the agreement between different people’s
responses. Finally, in A.4 we explore the agreement between people’s responses and machine advice.

A.1 Effect Sizes
When determining our study sample size, we aimed to recruit sufficiently many participants
to detect at least medium-sized effects (Cohen’s d = 0.5) at the significance level of 0.05 with
0.95 power, as detailed in our pre-registration, which can be found on the following url: https:
//aspredicted.org/D7X_NKL.

In Table 4, we report the values of Cohen’s d calculated on our dataset. We find that treatment T3
is associated with the smallest effect sizes, followed by treatments T4 and T5, and finally T2—which
has the largest effect sizes. When we compare the Cohen’s d values in Table 4 with the regression
coefficients reported in Table 3, we observe that our regression identified even small effects. Namely,
for values of Cohen’s d > 0.1, the corresponding regression coefficients are significantly different
from 0 in the regression analysis.

H1: change, H1’: change, H1: change, H1’: change, H2: H3:
bin., overall bin., specific mag., overall mag., specific accuracy consistency

T2 0.83 0.83 0.58 0.58 0.53 0.7
T3 0.004 0.33 0.07 0.28 0.05 0.07
T4 0.22 0.88 0.28 0.73 0.15 0.15
T5 0.29 1.02 0.27 0.72 0.13 0.16

Table 4. Cohen’s d. A value in row i and column j corresponds to the effect size of treatment i on the variable
j. On a high-level, Cohen’s d quantifies the difference between the means of variable j for two groups of
respondents: those assigned to treatment T1 and those assigned to treatment j. More precisely, we report the
values of Cohen’s d as defined in Cohen [20], calculated using the esize command in Stata, specifying the
option unequal, to specify that the two groups should not be assumed to have equal variances.

A.2 Agreement with Ground Truth
In Section 4, we quantified accuracy as the degree of agreement between respondents’ estimates
and the ground truth. In this section, we explore if our results hold for a broader set of measures of
accuracy. We further explore the directionality of the disagreement between people’s estimates and
the ground truth. That is, we investigate whether people tend to overestimate or underestimate
apartment prices.

A.2.1 Accuracy of People’s Implicit Relative Judgments.
In this section, we go beyond the accuracy of people’s absolute judgments about apartment prices,
and consider the accuracy of their implicit relative judgments. We start by deriving people’s implicit
relative judgments from their absolute estimates. For each pair of apartments (A,B), we check if
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Fig. 9. Error in people’s implicit relative judgments. The y-axis shows the fraction of instances where people’s
implicit relative ordering of apartments (>,< or =) did not match the ground truth ordering based on the listing
price. We report mean values calculated across all respondents and pairs of apartments ± 1.96 standard errors
of the mean (SEM).

a respondent estimated Apartment A to be more expensive (>), less expensive (<) or equally as
expensive (=) as Apartment B. Then we compare these implicit relative judgments with the ground
truth (i.e., with the relative ordering of apartments based on their listing price).

In Figure 9, we report the fraction of instances where people’s implicit relative ordering differed
from the apartments’ true ordering. Descriptively, we observe that the error in people’s pre-review
relative estimates is similar across all experimental conditions. In experimental conditions T1 and
T3, the error in people’s pre- and post-review estimates remained similar. However, in T2, T4 and T5,
the error decreased by 5.2, 5.1 and 5.0 percentage points respectively. That is, treatments T2, T4 and
T5 reduced the error in people’s implicit relative judgments by 22.1%, 20.4% and 20.5% respectively.
These exploratory findings are in line with our findings related to people’s absolute judgments.

A.2.2 Directionality of Errors.
In this section, we take a closer look at the directionality of people’s errors. Namely, we explore
whether respondents tend to systematically overestimate or underestimate apartment prices.

In our experiment, we utilized a dataset of apartments introduced by Poursabzi-Sangdeh et al.
[80]. The dataset contains information about apartments located in New York City, that were
listed for sale between 2013 and 2015. Since the prices of real-estate have increased between the
mid-2010s and today, it is possible that people systematically overestimate the prices of these
apartments. On the other hand, since we utilize a dataset of apartments located in New York City,
which is significantly more expensive than other US cities, it is possible that people systematically
underestimate the prices of these apartments. In this section, we investigate if people’s errors
exhibit either of these patterns. We note that even if people exhibited such a systematic bias in
their errors, this would not affect the validity of our results. Any systematic overestimation or
underestimation related to the apartments used as stimulus material would be the same across
treatments, since they utilize the same 30 apartments. Since our hypotheses concern the differences
between experimental conditions, this would not impact our results.

We commence by exploring the directionality of errors in people’s initial estimates of apartment
prices. In Figure 10a we show the distribution of errors in people’s pre-review estimates. Values on
the left side of the x-axis correspond to instances where respondents underestimated apartment
prices, while values on the right correspond to instances of overestimating apartment prices.
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(a) Distribution of errors in respondents’ pre-review
estimates.

(b) Distribution of errors in respondents’ post-review
estimates.

Fig. 10. Distribution of errors in respondents’ estimates, across all treatments. The x-axis shows the magnitude
of errors, i.e., the difference between the respondents’ estimates and the apartments’ true prices. The y-axis
shows the number of responses in our dataset that exhibited a certain magnitude of error.

Fig. 11. Directionality of response updates. The y-axis shows the fraction of revised responses that were
updated to increase (blue) or to decrease (orange) the initial price estimates, for each of the experimental
conditions T1-T5, shown on the x-axis.

Descriptively, the distribution is fairly close to normal, but it exhibits a left skewness. That is, our
respondents both underestimated and overestimated apartment prices in their initial estimates,
but they were more likely to underestimate them. Next we investigate how participants updated
their initial responses in our five experimental conditions. In Figure 11 we report the direction in
which respondents updated their estimates in the review phase. When reviewing their responses,
respondents were found to both increase and decrease their estimates of apartment prices, but
they were were more likely to increase them. That is, respondents were more likely to initially
underestimate apartment prices, but they were more likely to increase their initial estimates while
reviewing them. This leads us to the distribution of errors in people’s post-review estimates shown in
Figure 10b. Descriptively, the distribution of post-review errors is more narrow than the distribution
of pre-review errors, in line with the increase in the accuracy of people’s decisions. Additionally, the
distribution is less skewed. That is, the reviewing procedure helped people reduce the systematic
bias in the directionality of their errors.
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(a) Intraclass correlation. The y-axis shows the In-
traclass correlation among respondents over all the
apartments. A higher value indicates a higher degree
of consistency.

(b) Gini coefficient. The y-axis shows the Gini coef-
ficient of people’s responses averaged across apart-
ments. A lower value indicates a higher degree of
consistency. We report mean values ± 1.96 standard
errors of the mean (SEM).

Fig. 12. Effect of the interventions on the consistency of people’s absolute judgments. The experimental
conditions T1–T5 are shown on the x-axis.

A.3 Agreement with Other Respondents
In Section 4, we quantified consistency as the degree of agreement between respondents’ estimates.
In this section, we investigate whether our findings hold for a broader set of measures of inter-
annotator consistency.
We explore the consistency of two types of dependent variables: the respondents’ absolute

judgments, and their implicit relative judgments. In the former, we quantify the consistency between
respondents’ estimates of apartment prices. In the latter, we focus on the consistency of respondents’
judgements regarding the relative ranking or ordering of the apartments. That is, we evaluate
whether different respondents assign similar relative positions to the apartments.

We find that our results about the effects of the studied interventions on inter-annotator consis-
tency are robust across a variety of measures. Descriptively, we observe that treatments T1 and T3
do not impact the degree of consistency between respondents, neither in terms of their absolute
judgments nor in terms of their implicit relative judgments. On the other hand, treatments T2, T4
and T5 are found to improve both types of consistency notions. For people’s absolute judgments, T2
leads to the greatest increase in consistency. For implicit relative judgments, T4 and T5 increase the
overall ranking consistency the most, while all three treatments lead to a similarly large increase in
pairwise ranking consistency.

A.3.1 Consistency of People’s Absolute Judgments.
Intraclass Correlation Coefficient (ICC). The ICC is typically used as a metric to assess annota-
tors’ reliability. An estimate by annotator 𝑖 for apartment 𝑎 is modelled as 𝑥𝑖,𝑎 = 𝜇 + 𝛼𝑖 + 𝛽𝑎 + 𝜖𝑖,𝑎 ,
where 𝜇 is the unobserved overall mean, 𝛼𝑖 models the random effect specific to annotator 𝑖 , 𝛽𝑎
represents the random effect due to the features of apartment 𝑎, while 𝜖𝑖,𝑎 represents the noise.
With this model of annotator estimates, ICC is defined as follows:

𝐼𝐶𝐶 =
𝜎𝛽

𝜎𝛼 + 𝜎𝛽 + 𝜎𝜖
. (1)
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Here, 𝜎𝛽 represents the variability in the estimates due to differences in the features of the apart-
ments such as their size or number of rooms. 𝜎𝛼 captures the variability resulting from the differ-
ences in the scales used by different respondents, e.g., some respondents may consistently provide
higher estimates than others. 𝜎𝜖 accounts for the variability arising due to noise in respondents’
evaluations. We calculated the ICC using the Pingouin library [96]. We report the ICC3 values,
which—in line with our setting—assume a fixed set of 𝑘 respondents for each instance.

If the variability in the estimates is predominantly due to apartments’ features the ICC value
would be high. Conversely, if there is a high variance in the magnitude of the estimates due to
differences in scales (𝜎𝛼 ) or noise (𝜎𝜖 ) ICC would be lower. Essentially, the ICC captures how
responses cluster for each apartment. A value of zero implies that there are no clusters, and each
response is likely to be independent. A value of one implies that all the responses are the same.
Descriptively, we observe that the ICC of people’s pre-review estimates is similar across all

five treatments, as shown in Figure 12a. In treatments T1 and T3 the ICC of people’s post-review
estimates remained similar to the ICC of their pre-review estimates. However, in treatments T2,
T4 and T5 people’s post-review estimates exhibited a higher ICC than their pre-review estimates.
Namely, we observe an increase of 0.21, 0.14 and 0.13 in T2, T4 and T5 respectively.
It is important to note that although ICC is a consistent statistic, it has a positive bias, i.e., it

overestimates the true value. Additionally, it relies on several assumption such as 𝛼 , 𝛽 and 𝜖 having
an expected value of zero and 𝛽 being uncorrelated with 𝛼 and 𝜖 . Below, we consider a metric that
does not rely on such modeling assumptions: the Gini coefficient.
Gini Coefficient. The Gini coefficient is a measure of dispersion commonly used to quantify
inequality within groups, such as wealth inequality within a nation. Unlike the ICC, the Gini
coefficient directly focuses on the differences in respondents’ estimates for each apartment, without
any modeling assumptions. It is defined as follows:

𝐺 =

∑𝑘
𝑖

∑𝑘
𝑗 |𝑥𝑖 − 𝑥 𝑗 |

2 · 𝑘 ·∑𝑗 𝑥 𝑗
, (2)

where 𝑥∗ denotes the estimate by respondent ∗ and 𝑘 is the number of respondents. This value
captures the dispersion of people’s responses for a given apartment. A value of zero indicates
that the responses are closely clustered together, while a value of one means the estimates are
completely dispersed. To quantify the dispersion across all apartments, we calculate the average
Gini coefficient across all 30 apartments.

We report our findings in Figure 12b. Descriptively, we found a similar trend as for the ICC. For
treatments T1 and T3, the Gini coefficients of people’s pre- and post-review estimates remained
similar. On the other hand, in treatments T2, T4 and T5, people’s post-review estimates exhibit a
lower Gini coefficient, with a decrease of 0.08 in T2, and a decrease of 0.02 in T4 and T5.

A.3.2 Consistency of People’s Implicit Relative Judgments.
Pairwise Consistency.We consider a measure of consistency analogous to the measure of accuracy
described in Appendix A.2. We again derive people’s implicit relative judgments from their absolute
estimates. For each respondent and for each pair of apartments (A,B), we check if Apartment A was
estimated to be more (>), less (<) or equally as expensive (=) as Apartment B. However, instead of
comparing a respondent’s implicit relative judgment with the ground truth ordering, we compare
it to the other respondents’ orderings—namely, to the majority vote of others’ implicit relative
judgments.
In Figure 13a, we show the average degree of disagreement between individual respondents’

relative judgments and the majority vote. We observe that people’s pre-review estimates are
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(a) Inconsistency in people’s implicit relative judg-
ments. The y-axis shows the fraction of instances
where people’s implicit relative ordering of apart-
ments (>,< or =) did not match the relative ordering of
the majority of respondents. A lower value indicates a
higher degree of consistency. We report mean values
± 1.96 standard errors of the mean (SEM).

(b) Kendall’s W. The y-axis shows the values of
Kendall’s W statistic calculated on the respondents’
implicit rankings. A higher value indicates a higher
degree of consistency.

Fig. 13. Effect of the interventions on the consistency of people’s implicit relative judgments. The experimental
conditions T1–T5 are shown on the x-axis.

similarly consistent across all experimental conditions. In treatments T1 and T3, people’s post-
review estimates exhibit a similar degree of pairwise consistency as their pre-review estimates.
However, in treatments T2, T4 and T5 we find that the average disagreement with the majority
vote is decreased by 7.5, 6.9 and 7.1 percentage points respectively. It is important to note that the
pre-review inconsistency was already quite low, leaving little room for improvement. The observed
decrease in inconsistency in T2, T4 and T5 respectively correspond to 38%, 32% and 35% of the total
possible decrease.
While this metric focused on pairwise consistency, below we consider a metric that quantifies

the consistency in the overall ordering of the apartments: Kendall’s W.
Kendall’s W. In order to assess the consistency of respondents’ overall ordering of apartments,
we treat the provided price estimates as implicitly ranking all of the apartments from the least
expensive to the most expensive, allowing for ties. We then quantify the consistency between the
respondents’ implicit rankings utilizing Kendall’s W, a non-parametric statistic for rank correlation.
Kendall’s W is commonly employed to evaluate agreement amongst respondents in ranking

tasks. At a high level, Kedall’s W corresponds to the normalized sum of squared deviations from the
mean in the rankings. We used the Pingouin library [96] to compute Kendall’s W with a correction
for ties. A value of one would indicate perfect agreement amongst respondents, while a value of
zero would indicate no agreement.

In Figure 13b we show the values of Kendall’s W statistic calculated on the respondents’ implicit
pre-review and post-review rankings. Descriptively, we observe that in treatments T1 and T3, the
respondents’ pre-review and post-review rankings are consistent to a similar degree. However,
treatments T2, T4 and T5 show an increase in Kendall’s W of 0.12, 0.16 and 0.15 in the post-review
rankings compared to the pre-review rankings.
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Fig. 14. Change in agreement with machine predictions. The y-axis shows the fraction of pre-review estimates
that were revised to match the decision aid’s prediction exactly (Exact), that were revised in the direction of
the prediction, but did not match the prediction exactly (Closer), that were not revised (No Change), and that
were revised in the direction opposite of the prediction (Farther), for the experimental conditions T2, T4 and
T5, shown on the x-axis.

A.4 Agreement with Machine Advice
In this section, we investigate the degree of agreement between the respondents’ estimates and
machine advice. That is, we explore how observing machine advice impacted people’s estimates.
Did respondents adjust their initial estimates closer to machine predictions, or perhaps in the
opposite direction? When respondents followed machine advice, did they copy it exactly or just
move closer to it? We address these questions in Figure 14.
In T2, respondents observed the decision aid’s estimates of apartment prices. The majority of

respondents’ estimates were updated in the direction of machine advice (65%). That is, the absolute
difference between people’s estimate and the decision aid’s estimate became smaller for 65% of
responses. However, many estimates were not updated (33%), and a few estimates were even
updated in the direction opposite of machine advice (2%). Amongst the 65% of price estimates that
were updated in the direction of the observed advice, 47% were revised to exactly match the price
predicted by the decision aid, while the remaining 53% of estimates were just moved closer to the
decision aid’s predictions.

Unlike T2, where participants observed the decision aid’s estimates of apartment prices, in T5 re-
spondents observed only the decision aid’s comparative valuation of pairs of apartments. Therefore,
we cannot directly compare people’s estimates and the decision aid’s predictions. However, we can
compare the decision aid’s relative ordering of pairs of apartments and the respondents’ implicit
relative ordering based on their price estimates. As a running example, consider two apartments A
and B, a decision aid that estimated A to be more expensive than B, and respondents who estimated
A to be less or equally expensive as B. The price estimates of 85% of pairs of apartments shown in
the review phase were revised in the direction of machine advice (i.e., the respondents from the
running example either increased their estimate for A, or decreased their estimate for B, or both).
The implicit relative ordering of 11% of pairs of apartments was not revised, and the estimates of
4% of outlier pairs were revised in the direction opposite of machine advice (i.e., the respondents
from the running example either decreased their estimate for A, or increased their estimate for B,
or both). Among the 85% of pairs that were revised in the direction of the decision aid’s advice,
97% of the price estimates were updated so that the apartments’ implicit relative ordering matched
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the decision aid’s relative ordering (i.e., the respondents from the running example revised their
responses such that A is estimated to be more expensive than B), while for the remaining 3% of pairs
the price estimates were only moved closer to the decision aid’s prediction (i.e., the respondents
from the running example either increased their estimate for A, or decreased their estimate for B,
or both, but A remained less or equally as expensive as B.)

In T4, participants did not observe any explicit machine advice. However, the pairs of apartments
respondents were asked to review were selected by the decision aid that was also used in T5, thereby
implicitly providing guidance. Hence, we again compare this decision aid’s relative ordering with
people’s implicit relative ordering, for the pairs of apartments that were shown in the review phase.
Despite not having a chance to observe the decision aid’s relative ordering of apartments, many
respondents updated their estimates in the direction of the decision aid’s predictions. For 69%
of pairs estimates were revised in the direction of machine predictions, 24% of implicit relative
orderings were not revised, and only 7% of estimates were revised in the direction opposite of
machine predictions. Amongst the 69% of pairs revised in the direction of the machine predictions,
94% of the updates resulted in an implicit relative ordering that matched the decision aid’s relative
ordering (even though the respondents did not observe the decision aid’s relative ordering), while
for the remaining 6% of pairs the price estimates were only moved closer to the decision aid’s
relative ordering.
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