On the Fairness of Time-Critical Influence Maximization in Social Networks

Junaid Ali, Mahmoudreza Babaei, Abhijnan Chakraborty, Baharan Mirzasoleiman*, Krishna P. Gummadi, Adish Singla

Max Planck Institute for Software Systems and Stanford University*

1. What is Influence maximization?

- Several impactful applications:
- Social recommendations, viral marketing, information dissemination, etc
- Time-critical influence maximization (TCIM)
- Select seed nodes that maximize influence before a time deadline
- Examples include job advertisement, health related information dissemination etc

2. TCIM is unfair

- Traditional influence maximization:
 - Considers nodes to be homogenous
- Ignores sensitive feature groups (men, women, etc)
- Could result in disproportionate influence propagation
- Time deadline can exacerbate disparity

3. How can we measure fairness?

- Our Notion: Parity of average influence
- Our Measure:

$$\max_{i,j \in \{1,2,...,k\}} \left| \frac{f_{\tau}(S; V_i, G)}{|V_i|} - \frac{f_{\tau}(S; V_j, G)}{|V_j|} \right|$$

where,

$$f_{\tau}(S; V, G) = \mathbb{E}\left[\sum_{v \in V, t_v \ge 0} \mathbf{1}(t_v \le \tau)\right],$$

S is the seed set

V is the node set

G is the graph

 t_v is the time node v was influenced

au is the time deadline

k is the number of groups

4. TCIM-Budget problem

Seeds

Influenced

$$\max_{S \subseteq V} \sum_{i}^{k} f_{\tau}(S; V_{i}, G)$$

subject to $|S| \leq B$

- Problem is NP-Hard
- Approximate solution: Objective function is monotone submodular
- Guarantee: Total amount of influence

5. Fair TCIM-Budget problem

$$\max_{S \subseteq V} \sum_{i}^{k} f_{\tau}(S; V_{i}, G)$$

No approximate solution:
Problem is not monotone submodular

 $\mathcal{H}(z) := \log(z)$

$$\mathscr{H}(z) := \sqrt{(z)}$$

subject to $|S| \leq B$ and $\max_{i,j} \left| \frac{f_{\tau}(S; V_i, G)}{|V_i|} - \frac{f_{\tau}(S; V_j, G)}{|V_i|} \right| \leq C$

Surrogate: $\max_{S\subseteq V}\sum_{i=1}^k \mathcal{H}(f_{\tau}(S;V_i,G))$ subject to $|S|\leq B$

- Objectives
 - Higher value for higher influence
 - Increases more when underrepresented groups are influenced
- Guarantee: Total amount of influence

6. TCIM-Cover problem 7. Fair TCIM-Cover problem

 $\min_{S \subset V} |S|$

subject to
$$\frac{f_{\tau}(S; V, G)}{|V|} \ge Q$$

- Problem is NP-Hard
- Approximate solution: Objective function is monotone submodular
- Guarantee: Size of the seed set

Fair $\min_{S\subseteq V}|S|$ subject to $\frac{f_{\tau}(S;V_{i},G)}{|V_{i}|}\geq Q$ $\forall i$

- Objectives
 - All groups should be influenced by at least the required quota
- The disparity between the groups is bounded by 1-Q
- Stop increasing constraint objective when the required quota is met for each group
- Guarantee: Size of the seed set

8. Evaluation and experiments

- More proportional influence between different groups at a small cost of total influence
- Reduction in disparity depends on the curvature of the surrogate function

 Our method covers all the groups and results in low disparity

TCIM-Cover vs Fair TCIM-Cover: Cost

 Fairness comes at the cost of slightly larger solution set sizes