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ABSTRACT
The use of algorithmic (learning-based) decision making in sce-
narios that affect human lives has motivated a number of recent
studies to investigate such decision making systems for potential
unfairness, such as discrimination against subjects based on their
sensitive features like gender or race. However, when judging the
fairness of a newly designed decision making system, these studies
have overlooked an important influence on people’s perceptions of
fairness, which is how the new algorithm changes the status quo,
i.e., decisions of the existing decision making system. Motivated by
extensive literature in behavioral economics and behavioral psy-
chology (prospect theory), we propose a notion of fair updates that
we refer to as loss-averse updates. Loss-averse updates constrain the
updates to yield improved (more beneficial) outcomes to subjects
compared to the status quo. We propose tractable proxy measures
that would allow this notion to be incorporated in the training of a
variety of linear and non-linear classifiers. We show how our proxy
measures can be combined with existing measures for training
nondiscriminatory classifiers. Our evaluation using synthetic and
real-world datasets demonstrates that the proposed proxy measures
are effective for their desired tasks.
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1 INTRODUCTION
The use of algorithmic (data-driven and learning-based) decision
making systems in domains ranging from judiciary (recidivism
risk estimation) and banking (credit ratings and loan approval risk)
to welfare (benefits eligibility) and insurance (accident risks) has
raised numerous concerns about their fairness. Consequently, in
recent years, a number of notions of algorithmic (un)fairness have
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been proposed [15, 18, 24] and numerous learning mechanisms
have been devised to train algorithmic decision making systems
that satisfy these notions [5, 12, 13, 15, 18, 24–26]. These fairness
notions have focussed on both the decision outcomes as well as the
decision making process, i.e., the inputs used to make the decisions
and the objectives of the learning algorithms.

In this paper, we focus on a crucial aspect of algorithmic decision
making systems ignored by existing studies on fair learning namely,
fairness of updates to decision making systems. In many decision
making scenarios such as banking or judiciary or insurance, a newly
deployed system replaces an already existing decision making sys-
tem, be it run by a human decision maker or an older learning
model (e.g., learning models without discrimination-awareness) or
a learning model trained over outdated training data (e.g., when
features of users in a society evolve). Existing literature in behav-
ioral economics and psychology shows that peoples’ perceptions
of fairness of the new decision making system are influenced by
how the decision outcomes change from the status quo i.e., how the
new outcomes differ from the old outcomes [4, 16, 17, 22]. However,
current works on fair learning do not account for the status quo
when reasoning about fairness of a decision making system.

In this work, inspired by existing literature in behavioral eco-
nomics, we formally define a notion of update fairness namely,
loss-aversively fair updates. Intuitively, our notion of loss-averse
updates accounts for the “endowment effect” in human behav-
ior [16, 17], where an individual or a group of users perceives the
fairness of the new system based on whether their new outcomes
were more or less beneficial than their status quo outcomes from
the existing system.

We design intuitive measures for this notion that can be incor-
porated into a variety of linear and non-linear classifiers as convex
constraints and be efficiently learned. A classifier trained using
our constraints would account for the existing outcomes from the
status quo classifier.

We also show that our new notion of fair update can be easily in-
tegrated with existing mechanisms for training non-discriminatory
classifiers. For instance, when attempting to equalize rates of bene-
ficial outcomes such as positive class acceptance rate or true pos-
itive rate across different groups, adding our loss-averse update
constraint ensures that “no group of users is worse-off” than be-
fore. Such a constraint may be necessary in practice when training
non-discriminatory classifiers as Bazerman et al. [4] point out that
same “don’t make anyone worse off’ principle likely underlines
Supreme Courts decision [21] that firing personnel from histori-
cally advantaged groups to achieve parity (in order to overcome
past discrimination) is prohibited.

In the rest of the paper, we first formally define our notion of
fair update in the context of training classifiers. We also propose
tractable and efficient mechanisms to train fair classifiers while
satisfying this practical consideration. Experiments with synthetic



and real-world datasets show the effectiveness of our mechanism
in enforcing this consideration.

2 RELATEDWORK
Fairness in ML. A plethora of recent studies have focused on
proposing notions [15, 18, 23, 24] and mechanisms for fairness-
aware classification [5, 10, 12, 13, 15, 18, 23–26]. Formore discussion
into these notions, we point the interested readers to [3, 7, 19, 25].
While classification has received most attention in the area of
fairness-aware machine learning, some recent work has also fo-
cused on prediction tasks beyond classification, such as regres-
sion [6], ranking [8, 20] and clustering [9]. In this paper, we pri-
marily focus on updates to classification tasks, leaving fairness
of updates to regression, ranking, and clustering tasks to future
studies.
Indvidual-level vs. Group-level Fairness Notions. Fairness in
classification has been divided into two broad areas: individual-
and group-level fairness [12]. Loss-averse updates can be applied at
both individual and group-levels. However, in this work, we only
show results at the group-level.
Normative vs. Descriptive Notions of Fairness. Our fairness
consideration for updating decision making systems has roots
in normative vs. descriptive approaches in behavioral econom-
ics [16, 17]. For example, Kahneman et al. [16] show how certain
changes to an economic model that are accepted on the normative
standards might be deemed unacceptable on the descriptive stan-
dards. Our work here is motivated by such observations: while anti-
discrimination laws (normatively) prescribe how nondiscriminatory
decisions ought to be done, if people (descriptively) preceived the
changes in outcomes with the new nondiscriminatory decision sys-
tem to be too disruptively disadvantageous to them, they would
resist adopting the new system. Our notions of update fairness can
be thought of as addressing such practical considerations.

3 FORMALIZING NOTION OF LOSS-AVERSE
UPDATES

In this section, we formally define a notion of fairness that can
be useful when updating algorithmic decision making systems.
Specifically, we focus on decision making tasks centered around
binary classification.
Preliminaries. In a binary classification task, given a training
dataset D = {(xi ,yi )}Ni=1, the goal is to learn a function θ : Rd →

{−1, 1} between the feature vectors x ∈ Rd and class labels y ∈

{−1, 1}. For convex decision boundary-based classifiers like logistic
regression and (non)linear SVM, this task boils down to finding a de-
cision boundary θ∗ in the feature space that minimizes a given loss
L(θ ) overD, i.e., θ∗ = argminθ L(θ ). The convexity of the loss func-
tion ensures that the optimal decision boundary parameters can be
found in an efficient manner. Then, for a given (potentially unseen)
feature vector x , one predicts the class label ŷ = 1 if dθ ∗ (x) ≥ 0 and
ŷ = −1 otherwise, where dθ ∗ (x) denotes the signed distance from
x to the decision boundary. Without loss of generality, we consider
ŷ = 1 to be the beneficial (desired) label, e.g., being granted the loan
or being released on bail.
Setup.We consider scenarios where we need to update an existing,
status quo, binary classifier, whose decision boundary is denoted

by θsqo . We assume that the boundary of the new classifier, θnew
is learnt from the training dataset D. The outcomes of the updated
(new) classifier may differ from the status quo for many reasons
such as the status quo classifier being a human or an older (simpler)
learning model, or the status quo classifier being trained on out-
dated training data, or the status quo classifier being trained using
models without awareness of potential for discrimination. Our
notion of fair update defines the conditions in which the changes
in decision outcomes caused by an update would be deemed as fair.
Existing Notions: Discrimination in Classification.
Anti-discrimination laws require classification outcomes are also
required to be nondiscriminatory with respect to a sensitive feature
z ∈ {0, 1}, e.g., gender, race. Most of the existing studies differenti-
ate between the following two notions of discrimination: statistical
parity [12, 13]—also referred to as disparate impact, and equality
of opportunity [15, 24]—also referred to as disparate mistreatment.
Both notions require that certain group-conditional beneficial out-
come rates be the same for each group, i.e.,:

Bz=0(θ ) = Bz=1(θ ), (1)

where the definition of the benefit function Bz depends on the
notion of discrimination under consideration.

Under the notion of statistical parity (SP) [12, 13], the benefits
function is defined as the positive class acceptance rate (AR), i.e.,
the positive class acceptance rate should be the same for both the
groups. More formally,

— SP: P(ŷ = 1|z = 0) = P(ŷ = 1|z = 1), (2)

Under equality of opportunity (EOP) notion [15, 24], the benefit
function is defined as the true positive rate, i.e., the true positive
rate (TPR) should be the same for both the groups. More formally,

— EOP: P(ŷ = 1|y = 1, z = 0) = P(ŷ = 1|y = 1, z = 1), (3)

Note that, current notions of nondiscrimination do not take into
account status quo classifier. In the following section we introduce
a notion of updating status quo classifier.
New Notion: Loss-Averse Updates.We now formally describe a
new consideration of fair updates, introduced in Section 1. We draw
inspiration from human behavior and behavioral economics and we
consider how people might perceive fairness of an updated classi-
fier in comparison to status quo. Specifically, any disadvantageous
effect of an updated classifier would be considered unfair. Prospect
theory, proposed by Kahneman and Tversky [17], states that equal
amounts of loses result in a bigger loss in utility than the increase in
utility by the same amount of gains. In other words people percieve
losses much worse than gains, i.e., they are loss-averse. Given the
status quo classifier θsqo , a new classifier θnew constitutes a loss-
averse update only when the new classifier increases the beneficial
outcome rates for all groups. More formally,

Bz=k (θnew ) ≥ Bz=k (θsqo ), for all k ∈ {0, 1} (4)

where Bz can be any one of the benefit functions proposed in the
existing literature on nondiscriminatory classification.

4 UPDATING CLASSIFIERS LOSS-AVERSIVELY
In this section, we devise mechanisms to update status quo classifier,
θsqo to θnew that follow the practical considerations of “loss-averse



updates”. We specifically focus on training convex decision bound-
ary based classifiers (e.g., logistic regression, linear and non-linear
SVMs), i.e., the classifiers that learn the decision boundary parame-
ters by optimizing a convex loss function L(θ ).
Existing Mechanisms: Nondiscriminatory Classification. Ex-
isting mechanisms to train nondiscriminatory classifiers involve
solving an optimization problem maximizing accuracy while equal-
izing benefits, i.e., enforcing Eq. (1), for different sensitive feature
groups. More formally,

minimize L(θ ) (P1)
subject to Bz=0(θ ) = Bz=1(θ ),

Constraints in Problem (P1), as operationalized in Eqs. (2) and (3)
are non-convex. However, prior studies [5, 24, 25] propose tractable
convex or convex-concave proxies for enforcing the equality of
benefits constraint in Eqs. (2) and (3). Borrowing these proxies
from [5, 24, 25], one can replace the equal benefits condition with
proxies as follows:

— SP:
1
|D|

���� ∑
(x ,z)∈D

(z − z̄)dθ (xi )

���� ≤ c, (5)

— EOP:
1

|D+ |

���� ∑
(x ,z)∈D+

(z − z̄)dθ (xi )

���� ≤ c, (6)

where D+ are data points with y = 1. Here equality of opportunity
limits discrimination in true positive rates of different groups. The
covariance threshold c ∈ R+ determines the level of discrimination,
with c = 0 aiming for a perfectly fair classifier.
New Mechanism: Loss-Averse Updates. For updating the sta-
tus quo classifier, θsqo , in a nondiscriminatory and loss-aversive
manner, one can add the respective conditions to the classifier
formulation as a constraint, i.e.,

minimize L(θ ) (P2)
subject to Bz=0(θ ) = Bz=1(θ )

Bz=k (θ) ≥ Bz=k (θsqo), for all k ∈ {0, 1}.

The constraints in the above problem are nonconvex functions of
the classifier parameters θ , if B is defined in terms of probabilities
as given in Eqs. (2) and (3), for example, this would make it very
challenging to solve the resulting problem in an efficient manner.

We used the convex proxies from prior studies [5, 24, 25] for the
first constraint as given by Eqs. (5) and (6).We propose the following
convex proxies to approximate the new loss-averse constraints in
Problem (P2):
Under SP, when the benefit function is AR we suggest:

1
|Dz=k |

∑
x ∈Dz=k

dθ (x) ≥
1

|Dz=k |

∑
x ∈Dz=k

dθsqo (x) + γ , (7)

for all k ∈ {0, 1},γ ∈ R+.

Under EOP, when the benefit function is TPR we suggest:
1

|D+z=k |

∑
x ∈D+z=k

dθ (x) ≥
1

|D+z=k |

∑
x ∈D+z=k

dθsqo (x) + γ , (8)

for all k ∈ {0, 1},γ ∈ R+,

where Dz=k are the data points whose sensitive attribute value
z = k , and D+z=k are data points in the dataset with label y = 1
and sensitive attribute value z = k . Here, γ controls the strength
of the constraint. We pick an appropriate γ using a validation set.
Note that the right hand side in Eqs. (7) and (8) represents constant
terms since θsqo is already known.

Both of the proposed proxies are convex with respect to the
optimization variables. The convexity of the proxies (7 and 8) means
that for any convex function L(θ ) the optimization problem stays
convex and can be solved in an efficient manner.
Logistic Regression: SP. We can specialize Problem (P2), using
logistic regression classifier with L-2 norm regularizer, SP as a
notion of discrimination, given by Eq. (5), and loss-averse constraint,
given by Eq. (8), as follows:

minimize −
1
|D|

∑
(x ,y)∈D

logp(y |x ,θ ) + λ | |θ | |2 (P3)

subject to
1
|D|

���� ∑
(x ,z)∈D

(z − z̄)dθ (xi )

���� < c

1
|Dz=k |

∑
x ∈Dz=k

dθ (x) ≥
1

|Dz=k |

∑
x ∈Dz=k

dθsqo (x) + γ ,

for all k ∈ {0, 1},γ ∈ R+.

Logistic Regression: EOP. Similarly, considering equality of op-
portunity as a notion of nondiscrimination we can approximate
Problem (P2), by adding Eqs. (6 and 8) as constraints to logistic loss,
as follows:

minimize −
1
|D|

∑
(x ,y)∈D

logp(y |x ,θ ) + λ | |θ | |2 (P4)

subject to
1

|D+ |

���� ∑
(x ,z)∈D+

(z − z̄)dθ (xi )

���� < c

1
|D+z=k |

∑
x ∈D+z=k

dθ (x) ≥
1

|D+z=k |

∑
x ∈D+z=k

dθsqo (x) + γ ,

for all k ∈ {0, 1},γ ∈ R+.

5 EVALUATION ON SYNTHETIC DATASET
In this section we evaluate the effectiveness “Loss-averse” con-
straint (7), using a synthetic dataset on a binary classification task.
We consider a well known notion of nondiscrimination, namely
statistical parity. Due to space considerations, we show the results
of loss-averse formulation, given by Eq. (8), combined with equality
of opportunity, using synthetic data in Appendix A.

5.1 Dataset and Experimental Set up
We used synthetic dataset with binary ground truth class labels
y ∈ {+1,−1}. Each data point comprises of 2 features besides a
binary sensitive feature, i.e., z ∈ {0, 1}, where z = 0 is the protected
group. We do not use the sensitive attribute during training.
Synthetic Dataset. For demonstrating the results of loss-averse
updates with statistical parity, given by Eq. (2), as a notion of nondis-
crimination, we used the dataset proposed by Zafar et al. [25]. This
dataset comprises of 6000 data points, the class labels were drawn
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Figure 1: [Synthetic dataset. Enforcing statistical parity] These figures show a comparison between the solutions of Prob-
lem (P1), using SP proxies, and Problem (P3). Left panel shows the beneficial outcome rates, i.e., positive class acceptance rates,
for a classifier only enforcing SP constraint (solid lines), and a classifier additionally enforcing the “loss-averse” constraint
(dotted lines). Right panel shows the nondiscrimination-accuracy tradeoff for both the classifiers. Enforcing “loss-averse” con-
straint, defined in Eq. (7), leads to significant additional loss in accuracy for the same level of discrimination.

uniformly at random. Conditioned on the class membership, each
data point was sampled from the following distributions:

p(x |y = 1) = N ([2; 2][5, 1; 1, 5]),
p(x |y = −1) = N ([−2;−2][10, 1; 1, 3]).

Value of the sensitive attribute was sampled from the following
Bernoulli probability distributions:

p(z = 1) =
p(x

′

|y = 1)
p(x

′
|y = 1) + p(x ′

|y = −1)
,

where, x
′

= [cos(ϕ),− sin(ϕ); sin(ϕ), cos(ϕ)]x , i.e., the rotated fea-
ture vector, x . On average there were 3280 points in the protected
group and 2720 were in non-protected group.
Experimental Setup. The dataset is split into 70%-30%, train-test
folds. Additionally, hyperparameters are validated using a 30% hold
out set from the training data. All the results have been averaged
over 5 shuffles of the data initialized by different random seed. In
order to pick the penalization parameter, λ in Problem (P3), multi-
plied with the regularizer, we trained the unconstrained classifier
for λ ∈ [1e − 5, 1e − 2]. Then, we picked a value which yielded the
highest accuracy on the validation set, for a particular shuffle of the
data . We used this value of the parameter for all the experiments
on that shuffle of the data. We use CVXPY [11] library to solve all
the optimization problems.

5.2 Loss-aversively Fair Updates
In this section we experiment with Problems (P1 and P3). First we
consider statistical parity, where beneficial outcome rates are de-
fined as positive class acceptance rate, as a notion of discrimination,
i.e., solving Problems (P1) using SP proxies. Then, we show results
combining SP and loss-averse constraints and we update θsqo with
loss-averse nondiscriminatory classifiers.
Training Loss-aversively Fair Classifier.We initialize θsqo with
the solution of unconstrained problem. Then, given a value of co-
variance threshold c , as used in Eqs.(5 and 6), and a range of γ , as

used in Eqs.(7 and 8), we solve Problem (P3). We, then, pick the
gamma values whose solutions yield a higher benefits compared to
θsqo , for all the groups, on the validation set. In case there are mul-
tiple such values, we pick the one whose solution yields maximum
accuracy. We then report the results on the test set.
SP. Accuracy of an unconstrained classifier, on Synthetic dataset, is
88%, and the acceptance rates for the protected and non-protected
groups are 31% and 72%, respectively. There is a clear disparity
in acceptance rates of both the groups. In order to remove this
disparity we solve Problem (P1), replacing the first constraint with
SP proxy, given by Eq. (5). For a covariance threshold c = 0, this
leads to a classifier with an acceptance rate of 51% and 52%, for
protected and non-protected groups respectively, and an accuracy
of 72%.
The results for this formulation, Problem (P1) specialized with SP,
are shown in Figure (1). The x-axis is covariance multiplicative
factorm : c =m × c∗, where c∗ is the covariance values of the un-
constrained classifier and c is covariance threshold as given in Eq.(5).
Solid lines in Figure (1a) represent the statistics of the classifiers
resulting from the solutions of this formulation. Figure (1b) shows
the accuracies of classifiers resulting from solving this formulation
in purple colored points.
Note that: i) Figure (1b) demonstrates that as the covariance is de-
creased the accuracy of the resulting, less discriminatory, classifiers
also decreases. ii) Figure (1a) shows that as the covariance decreases,
the discrimination also reduces. iii) However it should be noted
that discrimination is decreased by reducing the acceptance rate of
the non-protected group.
Loss-Aversiveness + SP. In order to train a classifier enforcing
loss-averse update of θsqo , Eq. (4), combined with statistical parity,
Eq (2), on the Synthetic dataset, we solve Problem (P3). Loss-averse
updates yield a classifier with an accuracy of 65% and acceptance
rates of 80% and 86% for protected and non-protected groups, re-
spectively, for the covariance value c = 0.
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Figure 2: [Adult dataset. Enforcing statistical parity] Left panel shows the beneficial outcome rates, i.e., positive class accep-
tance rates, for a classifier only enforcing SP constraint, i.e., solution of Problem (P1) using SP proxies (solid lines), and a
classifier additionally enforcing the “loss-averse” constraint, i.e., solution of Problem (P3) (dotted lines). Right panel shows the
nondiscrimination-accuracy tradeoff for both the classifiers. Enforcing “loss-averse” constraint, defined in Eq. (7), leads to a
significant additional loss in accuracy for the same level of discrimination.

The results are shown in Figure (1a) in dotted lines and in green
colored points in Figure (3b). i) The figures demonstrate that loss-
aversively fair updates yield a less discriminatory classifier while
increasing the benefits for both the groups, ii) however this comes
at a higher cost of accuracy.
Summary. In this section we demonstrated the effectiveness of
our proposed formulation on synthetic datasets. We illustrated the
effectiveness of loss-aversively making the status quo classifiers
nondiscriminatory, albeit at a higher cost of accuracy.

6 EVALUATION ON REAL-WORLD DATASET
In this section, we evaluate the effectiveness of our proposed schemes
in updating the status quo classifier, θsqo , compliant with the “loss-
aversively fair updates” consideration, on real-world dataset using
statistical parity as a notion of nondiscrimination. We also consider
another widely used notion of discrimination, i.e., equality of op-
portunity, and show loss-averse constraints combined with EOP
on a real-world dataset in Appendix B, due to space limitations.

6.1 Dataset and Experimental Setup
In this section we explain the real-world dataset used to evaluate
our proposed considerations.
Adult Dataset. We show result for loss-aversively fair update
mechanism, introduced in section 4, using Adult dataset [2]. Specif-
ically, we illustrate the effectiveness of Problem (P3) to train loss-
aversively fair classifiers, using Adult dataset. For experiments in
this section, we consider statistical parity as a notion of nondis-
crimination.

The Adult Dataset consists of 45, 222 subjects and 14 features
like gender, race, educational level, etc. The classification task is
to predict whether a person earns more than 50K USD per annum
(positive class) or not (negative class). We consider gender to be a
sensitive feature for this dataset.
Experimental Setup. For the experiments conducted on the Adult
dataset we use the same data split as used for Synthetic dataset. We

also randomize the data, as well as validate the hyperparameters in
a similar manner.

6.2 Loss-Aversively Fair Updates
In this section we compare the results of Problem (P1), using SP
proxies, and Loss-aversively fair updates given by Problem (P3)
using Adult dataset.
SP. On the Adult dataset, logistic regression classifier leads to an
accuracy of 84.6%. However, the classifier leads to the beneficial
outcome rates of 8% and 26% for women and men respectively,
showing a clear disparity in the beneficial outcome rates for the
two groups. Next, using the method of Zafar et al. [25], we train a
nondiscriminatory classifier while reducing the value of the covari-
ance threshold c , (Eq. (5)), towards 0. The results are shown in solid
lines in Figure (2a) and in purple colored points in Figure (2b). The
least discriminatory classifier in this case achieves the beneficial
outcome rates of 13% and 20% for women and men respectively,
with an accuracy of 83.7%. We notice that the discrimination is
reduced by lowering the beneficial outcome rates for men, which
leads to a violation of “loss-averse” consideration.
Loss-Aversiveness + SP. We next train classifier with the loss-
averse constraints (Eq. (7)) combinedwith SP, i.e., solve Problem. (P3).
The least discriminatory classifier in this case achieves the benefi-
cial outcome rates of 24% and 27% for women and men, respectively,
while achieving an accuracy of 80.8%. However, the reduction in
discrimination is achieved by only increasing the beneficial out-
come rate for both groups. Results are shown in Figures (2a and
2b), in dotted lines and green colored points, respectively.
The figure shows the beneficial outcome rates for (i) a classifier with
statistical parity constraint and (ii) a classifier with loss-averse and
statistical parity constraints. The figure shows that at successively
decreasing values of the covariance threshold c , while classifier
(i) achieves lower discrimination by increasing benefits for one
group and decreasing them for the other, classifier (ii) does so by
only increasing benefits for both the groups. Figure (2b) shows the



nondiscrimination-accuracy tradeoff achieved by both the classi-
fiers. The figure demonstrates that, as expected, classifier (ii) incurs
a much higher cost in terms of accuracy for the same level of dis-
crimination due to the additional loss-averse constraint.
Summary. Our proposed methodology, in Section 4, successfully
enforces the loss averse constraint while updating the status quo
classifier, θsqo , to a nondiscriminatory classifier. However, enforc-
ing these constraints could be at a significant additional cost in
terms of accuracy.

7 CONCLUDING DISCUSSION
A number of recent works have explored various aspects of fairness
related to algorithmic decision making. In this paper, we focus
on an aspect of decision making that crucially affects people’s
fairness perceptions, yet has been overlooked: it is the fairness of
updating decision making, i.e., how the decision outcomes change
when updating a decision making system.

Based on observations in behavioral economics and psychol-
ogy, we note that any “disadvantageous” changes in outcomes to
individual subjects or groups of subjects would be perceived as
unfair. Accordingly, we propose a complementary notion of up-
date fairness that we call loss-averse updates. Loss-averse updates
try to constrain updates to only yield more advantageous (more
beneficial) outcomes compared to status quo.

In this work, we formalize this notion in the context of classifica-
tion tasks. We proposed measures that would allow these notions
to be incorporated in the training of any convex decision-boundary
based classifiers (like logistic regression or linear/non-linear SVM)
as convex constraints. We also show how this notion can be com-
binedwith prior notions andmeasures of non-discrimination in clas-
sification. Our evaluation using synthetic and real-world datasets
demonstrates the benefits of loss-averse updates in practice.

Our work here also opens up a number of new and interesting
research directions. The motivation behind our notions of fair up-
dates generalize to any algorithmic decision making scenario that
affects people’s lives including search and recommender algorithms
such as Google’s search, Facebook’s NewsFeed, Amazon’s product
recommendations or market-matching algorithms like Uber’s rider-
driver matching algorithms. Exploring how our notion loss-averse
updates can be applied to these more complex algorithmic decision
making scenarios (beyond binary classification) remains an open
challenge.
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A EVALUATION ON SYNTHETIC DATASET:
EOP

In this section we will present the “loss-averse” fairness results
combined with equality of opportunity, using synthetic dataset. We
show the results of the optimization Problem (P4).

A.1 Dataset and Experimental Setup
In this section we explain the synthetic dataset used for demon-
strating the loss-averse consideration and the experimental setup
used to solve the optimization Problem (P4).
Synthetic Dataset. Each data point comprises of 2 features apart
from the sensitive attribute. Each data point also has a binary
ground truth label. For equality of opportunity, as given by Eq. (3),
we are considering true positive rates as a notion of benefit. To
demonstrate the results of fair updates combined with EOP, we
use a synthetic dataset proposed by Zafar et al. [24], except that
we flip the ground truth labels in order to have a disparity in the
false negative rates instead of the false positive rates. We generated
16000 data points with the probability distributions of the features
given as follows:

p(x |z = 0,y = 1) = N ([2; 2][3, 1; 1, 3])
p(x |z = 1,y = 1) = N ([2; 2][3, 1; 1, 3])

p(x |z = 0,y = −1) = N ([1; 1][3, 3; 1, 3])
p(x |z = 1,y = −1) = N ([−2;−2][3, 1; 1, 3])

Both, class labels, y, and value of the sensitive attribute, z, were
sampled uniformly at random.
Experimental Setup. We use the same data split and method of
validating the hyperparameters as explained in section 5.

A.2 Loss-Aversively Fair Updates
In this section we show the results of Problem (P1), using EOP as
a notion of nondiscrimination. We also show results for the loss-
averse formulation combined with EOP, given by Problem (P4).
EOP.An unconstrained classifier trained on Synthetic dataset yields
an accuracy of 86% and true positive rates (TPRs) of 94% and 77%
for non-protected and protected groups, respectively. To equalize
the TPRs we solve Problem (P1) using proxies for EOP given in
Eq. (6).
These results are show in Figure (3a) in solid lines and Figure (3b)
in purple colored points. i) In order to reduce discrimination, this
formulation yields a classifier which lowers the TPR of the non-
protected class to 72% and raises the TPR of the protected group to
79%, for covariance threshold c = 0, while achieving an accuracy
of 74%. ii) Figure (3a) shows the limitation of equality of oppor-
tunity proxy proposed by Zafar et al. [24], as it achieves a lower
discrimination for higher value of the covariance.
Loss-Aversiveness + EOP. To avoid lowering the benefits for any
group while reducing discrimination, we solve the Problem (P4).
We encountered some issues in convergence for some values of
covariance factor, specifically smaller ones. Out of 7 random seeds
that we tried we find the results for all covariance factors for only
5 seeds, we report the average of these results. One reason for the
lack of convergence could be that a very high base TPR might make
it difficult to find a nondiscriminatory classifier.For covariance

threshold c = 0, this formulation leads to a classifier whose true
positive rates are 95% and 99% for non-protected and protected
groups, respectively, with an accuracy of 64%.

We show these results in Figure (3a) in dotted lines and Figure (3b)
in green colored crosses. i) These figures illustrate the effectiveness
of the loss-averse formulation, as the resulting classifiers achieve
nondiscrimination by increasing TPR for both groups, ii) however
this results in a significant drop in the accuracy.

B EVALUATION ON REAL-WORLD DATASET:
EOP

In this section we will present the “loss-averse” fairness results
combined with equality of opportunity, using a real-world dataset.

B.1 Dataset and Experimental Setup
In this section we explain the dataset and the experimental setup.
We show result of Problem (P1), with EOP as a notion of nondis-
crimination, as well as Problem (P4), which combines EOP and
loss-averse constraints.
SQF Dataset. For experiments in this section we consider NYPD
SQF dataset [1]. The NYPD SQF dataset consists of pedestrians who
were stopped in the year 2012 on the suspicion of having a weapon.
The task is a binary prediction task which indicates whether (neg-
ative class) or not (positive class) a weapon was discovered. For
our analysis, we consider the race to be the sensitive feature with
values African-American and white. After balancing the classes and
considering same features as Goel et al. [14], with the exception that
we exclude the highly sparse features ‘precinct’ and ‘timestamp of
the stop’, we obtain 5,832 subjects and 19 features.
Experimental Setup.We used similar experimental setup as ex-
plained in section 5.

B.2 Loss-Aversively Fair Updates
In this section we show the results of Problem (P4), which enforces
EOP and loss-averse constraints and compare them with the results
of Problem (P1), which only enforces EOP using the proxy given
by Eq. (6), on NYPD SQF dataset.
EOP. With equality of opportunity constraint, where beneficial
outcome rates are defined in terms of true positive rate, we experi-
ment with NYPD SQF dataset. Unconstrained logistic regression
on SQF yields an accuracy of 74.4%, while the beneficial outcome
rates are 69% and 82% for Whites and African-Americans, respec-
tively. Least discriminatory classifier, trained with c = 0, given in
constraint Eq. (6), yields benefits of 72% and 76% for Whites and
African-Americans, respectively, while achieving an accuracy of
71.4%. Similar to the previous cases, this classifier also achieves
lower discriminations by raising the benefits for one group while
increasing them for the other group.
Loss-Aversiveness + EOP. Next, we combine the nondiscrimi-
nation constraint with the loss-averse constraint, given by Prob-
lem (P4), in order to update θsqo . A least discriminatory loss-averse
classifier trained on NYPD SQF dataset yields an accuracy of 71%
and benefits of 84% and 81% for African-Americans and White,
respectively. Figure (4a) shows the beneficial outcome rates for
(i) a classifier with only nondiscrimination constraints and (ii) a
loss-averse classifier with nondiscrimination constraints. Again,
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Figure 3: [Synthetic dataset. Enforcing equality of opportunity] Figure on the left shows the beneficial outcome rates, i.e., true
positive rates, for a classifier only enforcing EOP constraint (solid lines) and a classifier additionally enforcing the “loss-averse”
constraint, given in Eq. (8), is shown in dotted lines. Figure on the right shows nondiscrimination-accuracy tradeoff for both
the classifiers.
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Figure 4: [SQF dataset. Enforcing equality of opportunity] These figures show similar results as Figure (3) using SQF dataset.

we notice that classifier (ii) removes discrimination by only increas-
ing the beneficial outcome rates whereas classifier (i) does so by
increasing benefits for one group and decreasing them for the other.

Finally, the comparison of nondiscrimination-accuracy tradeoff
in Figure (4b) shows no significant difference between both the
classifiers.
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